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1.1 Introduction
The Healthcare domain needs many health devices linked to the internet due to the emerging growth of
Internet of Things (IoT) technologies. For the initial diagnosis and prevention, the Internet of Things
plays an essential role in analyzing health issues and generating alerts with the help of IoT devices. IoT
technologies play a significant role in providing efficient and effective solutions in health information
system areas. The Healthcare domain is crucial for people and organizations to get the services and
the delivery of services simultaneously. In this area, a massive collection of domain knowledge is
gathered by the medical devices that efficiently conducts the activities for remote patient monitoring in
a dynamic way. Different devices can be used to collect the patient data, such as monitoring wellness,
elderly care, chronic diseases, fitness activities, and assuring sustainability. These devices (diagnostic,
medical imaging, and sensor devices) are significant and effectively used for diagnosing, medicating,
and treatment. Different types of sensing devices such as blood pressure monitors, glucose meters,
thermometers, and heart rate sensors can be the best examples of IoT devices in health care. The stored
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and analyzed health data gathered from devices are later used for querying and generate alerts by
defining rules under emergency conditions. These applications provide IoT-based medical services for
reducing the cost, monitoring the patients, reducing healthcare providers’ time, and increasing patient
guidance.

These sensing devices can exchange the collected data (user information, health sensing data, his-
tory, device information, or other domain data). During the interchange of data by IoT devices, it is
necessary to ensure the confidentiality and privacy of the data and exchange the data without losing its
meaning. Semantic web technologies such as ontologies and rules are the best effort to maintain the
consistency of data. These technologies have proven to be a challenging task for the exploitation and
integration of data from different sources. IoT-based applications are included in semantic web tech-
nologies for providing sensor-based services and remote monitoring by linking the end-users. There
is a need to present the semantic modeling of data with IoT devices description. IoT devices generate
massive data every day by observations and actuations; every device has its own information and it
becomes challenging to access the information by different applications. This problem can be resolved
by involving semantics to reduce the ambiguity and increase the reusability of data for a significant
decision [1].

Semantic modeling generalizes the entities with their description and depicts the relationship among
entities to structure the data with its meaning. It is presented as a conceptual model to include semantic
data representation with its meaning and the possible relationship between them. In the semantic web
approach, data is modeled and organized to advance the knowledge base and maintain data consistency
as information is updated remotely. A single entity, word, or data cannot interpret the context or mean-
ing to humans, but linked entities can always provide the meaning with a context. For example, the
context of data in a database is expressed mainly by its structure but not focused on its meaning, while
in semantic modeling, the structure is described inherently with the meaning and description of data.
The hierarchy of classes and subclasses can describe semantic models as data classification, and classes
are related to the properties to generalize the structure. This abstraction of classification provides strong
readability and interpretation to both humans and machines, that was the semantic web’s central aspect.
Ontologies are presented as the backbone to achieve the goal of the semantic web to define the concepts
explicitly and presented as a semantic model. Abstractions can be presented in a semantic data model
as

• Classification – “instance_of” relations
• Aggregation – “has_a” relation
• Generalization – “is_a” relation

Recently, various ontology-driven healthcare systems have been leveraged by the IoT technologies
that provide the opportunities to enhance patient monitoring and detection of the abnormal situation
with the help of medical wearables and cloud infrastructure. It has been observed that elderly people
and some patients require tele-homecare; hence, homecare systems are emerging in daily life. This
chapter will discuss the semantic modeling of data with IoT techniques in healthcare with sensing de-
vices such as sensors, meters, etc. to monitor patients. These devices are helpful to collect the data and
pre-process the collected data for extracting knowledge; the extracted knowledge later is semantically
modeled in a knowledge base. Semantic modeling of the knowledge base is further helpful for seman-
tic representation and semantic reasoning. In healthcare, the physician and patients are connected with
heterogeneous IoT devices to provide semantic interoperability. The patient data set is semantically
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modeled with the metadata information using semantic technologies like RDF, RDFs, OWL, SPARQL,
etc., and the data of any patient can be extracted any time from any place by the IoT devices. Seman-
tic modeling with IoT has presented a new approach known as the Semantic Web of Things (SWoT).
Ontologies play a significant role in dealing with the massive amount of data by a semantic representa-
tion of the domain knowledge. Several ontologies with IoT-based applications in healthcare have been
proposed recently.

The rest of the paper has been organized as follows: Section 1.2 discusses the related work on exist-
ing semantic models in healthcare, Section 1.3 focuses on the background to highlight the semantic web
technologies, web-of-things, semantic web-of-things, etc. Section 1.4 discusses the semantic modeling
of data with different phases and examples. Finally, Section 1.5 concludes the chapter.

1.2 Literature review
The Internet of Things became a growing technology in healthcare for monitoring patients remotely and
discovering new drugs. The quality and efficiency of healthcare have robust features such as adaptabil-
ity, flexibility, cost shrinkage, affinity, and high speed. Considerable work has been done with semantic
interoperability in healthcare and is discussed in this section.

Titi et al. [2] presents a fuzzy-ontology-based system with the IoT for the remote monitoring of
diabetic patients. The primary focus of this work is to propose the ontology-based model and the se-
mantic fuzzy decision-making mechanism. They evaluated the proposed model by query answering and
it resulted in the effective monitoring for patients.

Saad et al. [3] presented an ontology-based framework with IoT technologies for the continuous
monitoring of the patient’s status remotely.

Chiang and Liang [4] proposed a context-aware, smart, homecare system for the tele-homecare of
persons under care. Under supervision, the proposed system keeps the essential contexts in knowledge
ontology, including the person’s environmental and physiological information. The sensing devices
enable the person under care to interact with the system through gestures.

Selvan et al. [5] proposed a fuzzy ontology-based recommender system using Type-2 fuzzy logic to
advise drugs and diet for chronic disease patients. Sensing devices like wearable sensors and IoT-based
medical records are used to extract the patients’ risk factors and is connected with Linked Open Data
(LOD) to generate a public knowledge base.

Reda et al. [6] proposed a semantic data model to evaluate the information from different data
sources with domain-specific or generic data sets and merged them into an interconnected data space
with IoT health data sources. This model enables logical reasoning and automatic inferencing and
significantly provides the reusability of existing sources.

Subramaniyaswamy et al. [7] proposed a health-centric recommender system, ProTrip, that can
recommend food availability by taking climate attributes based on the user’s choice and the nutritious
value of food. The proposed recommender system has been designed over the ontological knowledge
base by the semantic modeling of heterogeneous user profiles and their descriptions. The proposed
model has been evaluated for real-time IoT-based healthcare systems.

Moreira et al. [8] proposed SAREF4health, an ETSI Smart Appliances REFerence (SAREF) IoT
ontology for real-time electrocardiography (ECG) to describe the need of representing time series. It
follows ontology-driven semantic modeling to develop the ECG ontology in the Unified Foundational
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Ontology (UFO) as a reference model. SAREF4health is efficient in endowing semantic interoperability
of IoT techniques that require handling frequency-based time series.

Jabbar et al. [9] proposed an IoT-based Semantic Interoperability Model (IoT-SIM) to present se-
mantic interoperability between heterogeneous IoT devices in the healthcare domain. A physician can
remotely monitor a patient’s health status with the help of heterogeneous IoT devices. All entities’
descriptions have been semantically annotated and interpreted with its meaning by users and devices.
They have used RDF and RDFs to design the semantic model of healthcare entities and relate them
as triple (subject, predicate, object) to make a semantic representation. SPARQL queries are used to
extract the information.

Kim et al. [10] designed a medical lifelog ontology (MELLO) by extracting the lifelog concepts
and their relationships among these concepts. It follows the ontology-development methodologies and
is semantically annotated to provide a clear definition of each concept. The main aim of MELLO is
to support the categorization and semantic mapping of lifelog data from heterogeneous health self-
tracking devices.

Rhayem et al. [11] have designed a HealthIoT ontology to model the information of connected
devices and knowledge of medical things on the internet. This semantic model also offers semantic in-
teroperability with healthcare devices and medical equipment. This semantic model has been evaluated
with SWRL rules and inbuilt reasoners.

Jin and Kim [12] presented a semantic model to promote semantic interoperability with the server,
e-Health objects, and clients. This model also reused Semantic Sensor Network (SSN) to deal with
the sensing devices’ interoperability issues. This ontology has been created to organize the e-Health
information by reusing SSN and assessed only by the reasoner at modeling time.

Linked Health Resource (LHR) [13] ontology is designed using semantic web technologies to de-
scribe the healthcare information. This ontology has reused the SSN/SOSA IoT-based model to connect
with IoT devices. The reasoning and SPARQL queries have evaluated the proposed ontology to analyze
the completeness of modeled knowledge.

1.3 Background
This section discusses semantic web technologies and basic terminologies, Internet-of-Things (IoT),
Semantic Web-of-Things (SWoT), and IoT-based general-purpose and domain-specific semantic mod-
els.

1.3.1 Semantic web and terminology
The semantic web has been introduced as Web 3.0, an extension of WWW. The primary aim of the
semantic web is to present the web of data rather than documents. It enables machines to interpret the
meaning and link one resource to other resources with their unique address. The semantic web contains
some specific standards as its technology, such as RDF, RDFs, OWL, and SPARQL. The Resource
Description Framework (RDF) was presented as a fundamental element of the semantic web to create a
statement for an entity or resource. The RDF statement is described with three parts, subject-predicate-
object (SPO). A collection of RDF statements is also known as RDF triples [40]. The RDF became
a W3C standard in 2004 to present labeled, directed, and typed graphs. RDF provides the facility for
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linking and publishing the data [41]. RDF is found appropriate with OWL. RDFs are an extension over
RDF to offer more power to increase the expressivity of attributes of the classes. RDF and OWL, both
standards empower the web for sharing data and documents with machines as well as humans, which
provides efficient searching and makes it easy to reuse information all over the web [40]. SPARQL is
the way to query, extract, and update the stored data in the RDF format on the semantic web. SPARQL
plays a vital role in navigating different databases and explores the relationships among data. A few
query languages that include SeRQL [39] and RQL [38] have been presented for RDF throughout the
years, but SPARQL became the standard language for querying with RDF data [37]. SPARQL is the
most commonly used graph-based standard query language to extract and update data stored in the RDF
format.

1.3.2 Web-of-Things
The Internet of Things (IoT) enables connecting the devices to provide autonomous behavior and guar-
antee privacy, trust, and security. The IoT presents as a robust research area with distributed methods
from different aspects for gaining popularity and promoting IoT development methods. The expansion
of the IoT is the Web of Things (WoT) that is presented as the open web standards to support machine
interoperability and information sharing. The conventional web services are empowered with physical
world services by carrying IoT into the present web [36]. This aspect of WoT presents a new practice of
bridging the gap between physical and virtual worlds. This is possible only with the help of Hyper Text
Transfer Protocol (HTTP) and Constrained Application Protocol (CoAP) and application programming
interfaces (API). Hence, applications have the advantage with the HTTP protocol to facilitate the plat-
form to publish data updates into machines for fetching data updates by the machines and exchanging
the information.

1.3.3 Semantic Web-of-Things
The Semantic Web of Things (SWoT) is the current research to assimilate the WoT to the semantic
web. The main motive of SWoT is to offer the convergence of IoT that is presented as the addition of
semantics into Web of Things (WoT) that provide the sharing of ontologies and data with machine inter-
operability. There are many issues in scalability; heterogeneity and interoperability arise from various
interconnected machines [33]. The SWoT assures coherent extension to integrate the IoT with the digi-
tal and physical world and concentrates on providing robust level interoperability that permits to reuse
and share of things with semantics [34]. Ontologies are a powerful tool to give semantic interoperability
among systems. They make able machines to provide full interoperability with the semantics of data to
be shared for all devices. Ontology can be managed by machines and express the concept definitions
and restrictions with possible understandings to design a rich structure of the specified domain [35].

The semantic analytics is a growing initiative to present the reasoning on Linked Open Data (LOD),
it is a way to derive meaningful information from IoT data that helps to process the data in an interop-
erable manner to derive new knowledge from existing facts [55]. Semantic analytics combines multiple
semantics technologies and analytic tools such as machine learning, LOD, and logic-based reasoning.
The main aim of semantic analytics is to interpret data into actionable knowledge and provide reason-
ing along with reasoning approaches and semantic web technologies. SPARQLStream was presented
as a novel approach for querying and accessing streaming data sources [56]. SPARQLStream has been
presented as an extension to the SPARQL 1.1 query language to manage the real-time sensor data [57].
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1.3.4 IoT-based semantic models
IoT is a vast area where devices are deployed to observe the event or action of interest. The existing
IoT-based system is generally restricted to the use of sensor data to a single application. The integration
of IoT in semantic models provides the reusability of sensor data in different applications and raises
productivity with strong heterogeneity and interoperability. Several semantic models are designed to
deal with different forms of sensor data and apply the reasoning with gathered sensor data. In this
section, general-purpose and domain-specific IoT-based semantic models [32,1] have been discussed
to highlight their features. Semantic technologies have been frequently applied in several domains,
specifically to deal with the heterogeneity challenges such as association of data, derive new knowledge
to design smart applications and interoperability at data processing, storage, and management. The
healthcare domain requires serious attention to apply the semantic interoperability in smart healthcare
services. Various frameworks have been presented that use fuzzy semantic models and contain different
layers to conduct different activities such as heterogeneous health records storage, mapping of local
semantic models to global ones by using algorithms, and interface to interact with the domain experts.

1.3.4.1 General-purpose IoT semantic models
Recently, several IoT-based semantic models have been presented for different purposes such as obser-
vations and actuations, context modeling, and construction and engineering. Some of the most widely
used semantic models are discussed: om-lite [31] is a model-based semantic model on presenting
the observation schema. The om-lite allows integrating data explicitly and indicating to observations
framed remotely. These observations help to estimate the data quality and are also significant for data
discovery. It does not describe any class for the feature of interest or observed qualities.

SSN/SOSA
The SSN/SOSA [30,29] model has been designed by W3C Spatial Data on the Web Working Group
and later it was considered as a W3C recommendation. SOSA is an extension to include (sensor, ob-
servation, sample, and actuator) concepts. It follows the ODP-based design principle for sensor-based
classes to allow multiple ways of creating observable properties.

SAREF ontology
SAREF (Smart Appliances REFerence) [28] is a shared semantic model for the smart appliances do-
main. This model describes the core concept of the “Device” class, designed for actions, functions, and
states. SAREF also describes different categories of devices like actuators, sensors, HVAC systems, etc.
SAREF is perfect for refining the standard semantics acquired in the ontology and frame new concepts.

Time
The time semantic model [27] is the most widely used model for temporal entities. It is presented as a
W3C recommendation for describing the temporal resources. This model represents the entities about
topological relations between time intervals and also date-time information.

QUDT
QUDT semantic model [26] is proposed by NASA to organize the concepts of units of measure, quan-
tities, dimensions, and types. Quantity is the core concept of the QUDT model to measure a specific
event, object, or physical device observation.
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Table 1.1 Domain-specific semantic models.

Ref. Domain Semantic models Online
status

Reused models

[11] Healthcare HealthIoT No NA

[8] Healthcare SAREF4health Yes SSN, SAREF

[12] Healthcare e-Health No SSN

[6] Healthcare IFO No NA

[13] Healthcare Linked Health Resource (LHR) No SSN, SOSA

[21] Healthcare SHCO Yes SSN/SOSA, SAREF

[43] Building and
Construction

BOT Yes NA

[44] Building and
Construction

ThinkHome Yes NA

[45] Building and
Construction

IoT-O Yes SSN

[46] Building and
Construction

saref4bldg Yes SSN/SOSA, SAREF

[47] Water saref4watr Yes SSN/SOSA, SAREF, GeoSparql

[49] Water WaterNexus Ontology Yes SAREF

[48] Water SWIM No NA

[50] Water xLMINWS.owl Yes dbpedia, time, ssn

[51] Agriculture saref4agri Yes SAREF, SOSA, TIME, GEOSP, SSN

[25] Agriculture Agri-IoT No SSN, AGROVOC

1.3.4.2 Domain-specific IoT-based semantic models
IoT plays an essential role in providing semantic interoperability with the events and physical devices
in a specific domain. Exciting work has already been done to make several domain-specific IoT-based
semantic models. Table 1.1 has presented several domain-specific semantic models such as healthcare,
waste, water, agriculture, building and construction, etc.

1.4 Semantic modeling of data
Semantic modeling is a process that organizes the knowledge more explicitly by using RDF and other
W3C standards; this knowledge can be queried and visualized for multiple decision-making tasks. This
section will discover main ideas such as semantic annotation, semantic linking, semantic representation
for semantic data modeling.

1.4.1 Semantic annotation
An annotation is a form of metadata that is attached to a part of a document such as a named entity, a
paragraph, or the complete document [15]. HTML documents are organized only for the representation
of text to form a syntactic web that is document-oriented in nature. A semantic annotation provides



8 Chapter 1 Semantic modeling for healthcare applications: an introduction

FIGURE 1.1

Semantic annotation of data.

linking some ontology-based metadata to define the semantics in a document and appears as a data-
oriented web called the semantic web. Ontologies are considered as formal conceptualizations of a
particular domain [53] and referred to as a semantic model to present the meaningful data.

Semantic annotation [54] is a process of assigning relevant information to the concepts and their
relationships. Semantic annotation enriched the documents with metadata information of each entity to
describe the meaningful data. The main motive to annotate the entities with metadata information is to
interpret by both humans and machines, reduce the ambiguity, increase reusability rather than be created
from scratch. The integrated metadata information helps improve the accuracy of the classification of
the machine learning algorithm during the classification process. An integrated approach of the feature
selection and semantic annotation is helpful to deal with the heterogeneous and extensive healthcare
data in biomedical AI systems. Semantic annotation provides a unified structure of data extracted from
different sources for promoting data integration. According to Pacha et al. [23,22], semantic annotation
provides a more detailed description, and a semantic context supports data analytics and intelligent
querying.

For example, “Covishield” is a type of Vaccine while “WHO” is an instance of an Organization,
and it will be described in the semantic model by the annotation of concepts. Both concepts will be
associated with the relationships like “typeOf”, “recommendedBy”, “createdBy”. Fig. 1.1 shows the
complete description of semantic annotation and all named entities are annotated with meaningful in-
formation such as “Covishield” is a type of Vaccine and recommended by WHO and launched in 2021.
The machines will easily interpret this annotation to write the inferences for reasoning purposes and
provide richer expressivity to the end-users.

1.4.2 Semantic linking
Semantic linking is the process to hold the relationship between two different resources and find the
information of a concept available in various resources [15,24]. Semantic links help identify the de-
scription of two objects that refer to the common entity like the same Person or Place. For example,
the “Sensor” concept is available in different semantic models; saref1, saref4bldg2, ssn3, which is se-
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FIGURE 1.2

Flow of semantic linking.

mantic linking and is found among all three models and can be reused for the same purpose. Semantic
linking provides strong reusability of existing concepts and reduces the ambiguity of resources as each
resource has a unique URI, and it can be easily reused rather than be created from scratch. Semantic
linking can be performed by specific steps such as requirement identification, finding domains, map-
ping requirements with existing resources, coverage of requirements in resources, and identifying the
semantic links among different resources in a specific domain. Semantic linking aims to identify the
association between existing semantic models and needs to analyze the availability of resources before
developing any new semantic model. For example, in the healthcare domain, if you need to have con-
cepts like BloodPressureMeter, GlucoseMeter, BPSensor, etc., “Sensor” or “System” can be reused as
a superclass of all types of measurement concepts. A “BPSensor” can be a subClassOf the “Sensor”
concept, and Sensor already exists in several models such as, saref,1 saref4bldg,2 and ssn.3 Fig. 1.2
shows the flow of semantic linking.

In Fig. 1.2, the semantic linking process is discussed in five steps. In the first step, a requirement has
identified “BPSensors is a Sensor” where “BPSensor” is a device to measure blood pressure, and it is
related to healthcare; hence, in the second step it needs to assign the domain “Healthcare” to the identi-
fied requirement. In step 3, it needs to map the requirement with existing resources such as “BPSensor”
that is a device, and it can be a subclass of Sensor, System, or Device class that may be already created
in existing semantic models (saref, sref4health, SHCO, etc.). It is found that there is a semantic linking
between three models (saref, saref4health, SHCO) for a particular concept, “BPSensor,” as a subclass
of Sensor, System, or Device that are available in existing models and can be reused to model any new
subclass of it.

1 https://saref.etsi.org/.
2 https://saref.etsi.org/saref4bldg/Building.
3 https://www.w3.org/TR/vocab-ssn/.

https://saref.etsi.org/
https://saref.etsi.org/saref4bldg/Building
https://www.w3.org/TR/vocab-ssn/
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FIGURE 1.3

Construction methodology.

1.4.2.1 Construction of a semantic model
After finding semantic linking and creating a semantic annotation, a semantic model can be easily
designed to model the meaningful information of a particular domain. There are several methodolo-
gies [17] such as On-To-Knowledge [19], DILIGENT [18], METHONTOLOGY [52], NeOn [16], and
tools (Protégé, OntoEdit) to create the semantic model by using the W3C standard. By following these
methodologies, Mishra et al. [20] has proposed a construction methodology to create a semantic model
for the military domain. This methodology can be applied to construct a new semantic model that
generally follows the four major steps: conceptual identification, concept analysis and organization,
encoding, and evaluation. In this model, military concepts are identified and organized in a hierarchy to
model it semantically using OWL, RDF, RDFs, and later evaluated by querying SPARQL queries with
the protégé tool. OOPs! also evaluates this model tool to find the pitfalls [42]. Fig. 1.3 shows the flow
of the construction process.

Tiwari et al. [21] extended the work to construct a smart healthcare ontology (SHCO) as a semantic
model for organizing the healthcare information and IoT devices. This model has proposed a combined
approach to evaluate the designed model. SHCO is modeled by using the Protégé tool and evaluated
four different tools (Test-Driven Development (TDD)onto, Themis, Protégé, and OOPs!) has used to
validate and verify the designed model. For verification, TDDonto and Themis are used to evaluate
the test-cases or requirements while OOPs! and Protégé supported to validate the modeled knowledge
in ontology. This model is available for reuse as it has been published online, and anyone can use
it. SAREF4health (Moreira et al., 2020) is a healthcare semantic model and leveraged by an iterative
and interactive approach in a transparent way. Requirement collection is the first step to implement
and validate the ontology as a semantic model to create this model. Several sources are analyzed to
collect requirements such as standards, data sets, APIs, specifications, data formats, and expert ideas
in the healthcare domain. In the second step, use cases are comprised for finding related concepts and
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FIGURE 1.4

Semantic representation on WebVOWL.

their relationships. In the third step, the scope and purpose of the ontology have been defined for the
specific-use cases by writing competency questions.

1.4.3 Semantic representation
The World Wide Web as a syntactic representation of text is offered by HTML, and later extended
by the semantic web as a semantic representation of data with its meaning and a unique address. Se-
mantic representation [14] does not present text as text only, while it is represented as a thing with an
individual address and meaningful information. It follows the data-centric approach to represent the
real-world entities and conceptualize the entities explicitly. After modeling data in ontology, it needs
to represent semantically. Semantic models can be represented online and offline with different tools
like OWLGrEd, Gruff, WebVOWL, and online publication using Widoco. Some of the representations
are discussed here for the SHCO model; it is uploaded on WebVOWL and represented as a graph in
Fig. 1.4.

WebVOWL is presented as a web application for the interactive representation of ontologies in the
online mode. Ontologies can be uploaded or a URI link can be provided for the semantic representation
of entities. It presents a visual representation for OWL ontologies as a graph representation for ontology
entities associated with a force-directed graph structure. The WebVOWL representations are generated
from JSON files automatically.
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FIGURE 1.5

SHCO representation as a specification.

The SHCO is published online and has an ontology specification draft on the web (http://w3id.org/
def/SmartHealthCare). Every concept and relationship of this model has defined by a unique address
such as “Actor,” a class defined explicitly with a unique IRI (https://w3id.org/def/SmartHealthCare#
Actor) and presented as a resource on the web. Object and data properties are also defined in the
same way as classes and have a unique and explicit IRI for object property “cared_by” (https://w3id.
org/def/SmartHealthCare#cared_by) and data property “hasAddress” (https://w3id.org/def/sanjutiwari#
hasAddress).

In this semantic representation, every attribute has its own space and address on the web, so it is
easy to reuse any existing attribute rather than create a new one. This representation is called ontology
publications and is shown in Fig. 1.5. This representation shows classes, object properties, data proper-
ties, and instances as an ontology specification. All entities have a unique address as a link to represent
it, and this link can be reused anywhere with its IRI.

The SHCO model has also been presented hierarchically for classes and their subclasses. The pro-
tégé tool is a standard tool to use for semantic modeling and semantic representation of data. It also
provides inferencing with different reasoners such as Hermit++, Racer, etc. Fig. 1.6 shows a hierarchical
representation of the SHCO. This model shows the classes and their subclasses of the healthcare domain
that has two major classes “HealthCare” and “HealthDevices.” HealthCare further has the subclasses of
Actor, Diseases, Event, Organization, Record, and HealthDevices also has subclasses Actuators, Radio
Frequency Identification (RFID), and Sensors.

OntoGraph plugin is good to represent in graph structure. Fig. 1.7 shows graph representation using
OntoGraph plugin on protégé.

http://w3id.org/def/SmartHealthCare
http://w3id.org/def/SmartHealthCare
https://w3id.org/def/SmartHealthCare#Actor
https://w3id.org/def/SmartHealthCare#Actor
https://w3id.org/def/SmartHealthCare#cared_by
https://w3id.org/def/SmartHealthCare#cared_by
https://w3id.org/def/sanjutiwari#hasAddress
https://w3id.org/def/sanjutiwari#hasAddress
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FIGURE 1.6

Hierarchical representation of the SHCO semantic model.

1.5 Conclusions
Various semantic-driven healthcare systems have been designed with devices interoperability by
leveraging IoT technologies. This chapter has discussed several existing semantic models such as
Saref4health, HealthIoT, IoT-SIM, MELLO, the LHR model, SHCO, and many more. We are also
concerned about the semantic web technologies (RDF, RDFs, OWL, SPARQL, etc.), web-of-things,
semantic web-of-things, and IoT-based semantic models (general-purpose and domain-specific mod-
els). Semantic modeling of data is the central aspect of this chapter, and it covers several phases such as
semantic annotation, semantic linking, constructing semantic models, and semantic representation. Sev-
eral case studies and examples have been discussed to present semantic annotation, semantic linking,
construction methodology, and semantic representation. Two types of semantic representation (online
and offline) have been presented to show different semantic models’ hierarchical and graph representa-
tion. The SHCO (Semantic Healthcare Model Ontology) model shows the various representation forms
such as a graph, hierarchical, and an ontology specification draft.
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FIGURE 1.7

Graph representation of the SHCO semantic model.
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2.1 Introduction
The Internet of Things or IoT may be a system of interconnected measuring equipment, mechanical
gadgets, or things with a unique identifier (UIDs). It has the ability to deliver information over a net-
work without any help from human beings. In modern generations, the IoT has become a steaming
telecommunication device that is achieving a reputation with scientists and specialties. Because of the
interdisciplinary methods, the IoT has been extraordinary in changing several aspects of the ancient,
standard healthcare. Internet of Things is a bridging platform, which combines the physical world and
the cyberspaces [1]. At the same time, in deep analytics intention, the internetworks and design of the
IoT for economical massive deployment have been needed to fulfill spaces of satisfactory service of
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quality, efficient fulfillment, and operations [2]. A lot of wireless technologies inventions lead to the
production of more IoT devices. This integration will lead to diagnosis and treatment of illness. The
IoT revolution has led to the drastic change in the healthcare industry. The middleware architectures
play a major role in the integration of the heterogenous nodes. For a ubiquitous type of communication,
the middleware is needed. Its helps in maintaining the communication between the various elements in
the network. A detailed overview of MOM and SOA type of architecture is explained in this chapter.
Section 2.1 gives a brief overview on the connectivity of IoT objects. Section 2.2 explains the various
middleware architectures for IoT in e-Health. Section 2.3 details more on the interoperable environment
with respect to the Internet of Things in the healthcare industry.

2.2 Internet of Things in the healthcare industry
The Internet of Things (IoT) is gaining fame and achievement in many fields like agriculture, oil
corporations, defense, healthcare, and transportation. In particular, healthcare is one of the quickest
developing fields within recent years. It affects the complete sphere of society in the healthcare indus-
try. Moreover, new industries have been concerned with numerous e-Health utilizations and they are
attempting to exploit it [3]. Sharp alertness concerning health and fitness is the most important issue
that drives the healthcare industry. The user having the Internet of Things gadgets can discard the clinic
visits and high-rated specialists avoiding long queues in hospitals. There is an outstanding development
within the usage of Internet of Things gadgets like wearables and implantable appliances.

The customers have their data in their mobile phones, and the major challenge lies in the interpre-
tation of the data. The Internet of Things in e-Health has hugely expanded in various fields to manage
important instrumental devices, patient-care, medical assets, track devices usage, etc. The IoT sensor
network should be scalable, interoperable, and heterogeneous. Fig. 2.1 gives an overview of the basic
connection between IoT data sources and IoT applications via middleware.

2.2.1 Characteristics of IoT ontology and challenges in e-Health
The IoT is machine-to-machine interaction between objects, devices, and people. Nowadays, most of
the communications and information processing is performed by IoT systems. Data processing has
changed with the introduction of IoT. It is difficult to operate between different types of data sources
and formats due to the size of the data, change in velocity, different variety of data sources, and data
formats. To describe concepts and relationships between different entities in various domains, the se-
mantics community has developed ontologies. With IoT, it is difficult to process the real time data due
to the increase in the number of sensors and multiple parameters. Lightweight models with a minimum
number of concepts and relationships are used to improve the processing time of IoT data.

The healthcare sector consists of many parameters to process and analyze, which in turn creates
a huge amount of data that is difficult to process and maintain a database. IoT plays a crucial role
in the medical sector to process such information efficiently. Before the invention of the IoT, patient’s
interactions with doctors were limited to hospital visits. The doctor could not monitor the patient contin-
uously. IoT enables devices, makes remote monitoring of patients possible, and thereby has transformed
the healthcare sector in a huge way. The beneficiaries of IoT in the healthcare sector are patients,
physicians, hospitals, families, and insurance companies. This reduces the hospital stay and prevents
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FIGURE 2.1

Connection between IoT data sources and IoT applications via middleware.

readmission as they are monitored remotely on a continuous basis. The stages of IoT solutions in the
healthcare industry include data acquisition, data collection and pre-processing, data storage, and data
analysis. The various stages of the IoT in the healthcare sector is shown in Fig. 2.2.

2.2.2 Characteristics of IoT in the healthcare industry
The main goal of IoT is to provide an independent system, which is capable of sharing information
between uniquely identifiable real world objects using RFID tags. The common characteristics of IoT
in the healthcare industry is shown in Fig. 2.3.

Device connection
With everything going on with technology, there needs to be a connection to be established between
sensors and other electronics and connected hardware and control systems. This is an important charac-
teristic of the IoT in the healthcare sector and it is the foremost process to establish good connectivity
before data acquisition.
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FIGURE 2.2

Stages of IoT in the healthcare sector.

FIGURE 2.3

IoT and its characteristics.

Data sensing
In the healthcare industry, there is a huge amount of data being generated day to day, and this data
needs to be sensed and managed effectively for future use. Data sensing can be done using various
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types of sensors like the mechanical sensor, electrical sensor, chemical sensor, biological sensor, etc.
Each sensor acquires different physiological parameters, which are essential to identify the patient’s
condition. The basic data collected from the patient includes general information like the name, date
of birth, mobile number, age, gender, family history, previous history, etc. and other physiological data
such as blood pressure, temperature, pulse rate, oxygen saturation, ECG, etc. to know about the patient’s
health condition.

Data collection and communication
Data is the important component of the IoT, and it is the first step toward development of any system.
The data generated during various procedures can be collected and stored for further processing and
communication. The communication between the device and data can be established either over short-
distance or long-distance communication pathways. The technology used for the communication of
data from the nodal center to the user-end is through WIFI, LoRa, NBIoT, etc. These communication
pathways should be secured, so that information loss will not occur.

Data Analysis
Various tools are available in the market for performing data analysis. These tools perform predictive
analysis of patient information, and predict patient illness accurately. They can extract clinical param-
eters such as age, gender, and other physiological information, define data elements from the database,
and create statistical models to respond to various outcomes and hypotheses for treatment, diagno-
sis, and research. Data analysis involves the following steps such as descriptive analysis, diagnostic
analysis, predictive analysis, and prescriptive analysis. By performing data analysis, one can track the
individual practitioner’s performance, and can track the details of healthy people and be able to identify
the people at the risk of chronic disorders at the earliest possible.

Data value
The data gathered from the big data analytics and the sensing capabilities in IoT devices plays a major
role in identifying the data value. Data value is the consequence of intelligence in the medical field
to diagnose and treat the disease appropriately. This can be either a manual action or the action based
upon the debates regarding phenomena and automation, and is often the most important piece of the
IoT in the healthcare industry.

Human value
Human value is what other technologies, communities, and goals give the place of the IoT. The Internet
of Everything dimension, the platform dimension, and the need for solid partnerships is to be considered
while incorporating the IoT in the medical field.

2.2.3 Challenges of the IoT in e-Health
Application of the IoT in e-Health is tremendous, as it helps to connect patients, physicians, and hos-
pitals at a wide range irrespective of its geographical location. There are however many challenges and
research issues also that need to be more carefully addressed before implanting them in real time. The
major challenges of the IoT in e-Health is depicted in Fig. 2.4.
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FIGURE 2.4

Challenges of the IoT in e-Health.

2.3 Middleware architectures for the IoT in e-Health
To overcome all of the challenges of the IoT in e-Health middleware is essential. The middleware
solution offers a technological framework that allows two or more systems to communicate with one
another. Its historical function has been mainly done to secure the transmission of a message from one
subsystem to another with varying degrees of coupling. Various middleware architectures are projected
to solve the application challenges and the infrastructure difficulties in the IoT, which are considered
critical issues and are needed to be addressed before providing a final solution in healthcare [4]. This
chapter gives an overview of various techniques stressing their features and problems.

2.3.1 An overview of IoT middleware solutions
The overview of the IoT middleware solutions is necessary to understand its impact when implemented
in real time. Razzaque et al. [5] offer a specific study among a lot of others. The authors of this study
examined many existing solutions in depth and provided a current overview of the various forms of
middleware architecture. Heinzelman et al. [6] and Espeholt et al. [7] provide another categorization of
IoT middleware methods.

Application-specific
The application specific method focuses on resource management and it is based on the demands of
a specific application. As a result, there is a tight connection between application and data sources,
resulting in the need for specialized middleware. This middleware technique is shown by MidFusion.
On behalf of applications, the technique finds and picks the optimal set of sensors or sensor agents.
The best set of sensors are picked using the algorithms in MidFusion techniques. The sensors utilizing
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the Bayesian methods are used to choose the optimal network ensuring that Quality of Service is the
main drawback in the MidFusion technique. The MiLAN type of middleware technique offers a policy
to integrate the data and the sensor network. The heterogeneity characteristics are not specified in the
MiLAN architecture.

Agent-based
The agent or modular-based method divides applications into modular programs to facilitate network
distribution thereby utilizing mobile agents. They may be emphasized by offering decentralized sys-
tems and are capable of addressing middleware’s reliability, availability, and resource management
needs. The complexity of a middleware architecture can reduce methods like Agila, Impala, and smarty
messages. However, it has certain drawbacks, such as the inability to conduct code management duties
and the unpredictability of system agents during runtime.

Tuple-spaces
It is an information repository that may be accessed by several people at the same time. Each device
from the physical layer is represented as a tuple space in the middleware. On the gateway, all of the
tuple spaces combine to produce a federated tuple space. This technique is ideal for the IoT devices
because it allows them to communicate data in real time while staying within gateway connectivity
restrictions. Intended for sensor networks and mobile ad hoc networks, TinyLime and TeenyLime are
tuple-space middleware solutions. They solve frequent disconnections and asynchronous communica-
tions issues yet has a flexible design that allows middleware to be utilized in a variety of contexts. They
do, however, have drawbacks in terms of resource management, scalability, security, and privacy. Vir-
tual machines (VMs), mobile agents, and interpreters are all part of adaptable strategy. The middleware
is made up of two layers based on this technique. In the first layer of the middleware, every physical
device is deployed as a virtual machine. A generic VM understands the modules in the second layer
and gives data to the application that expresses its demands through a query. This method supports
self-management transparency in distributed heterogeneous IoT infrastructures while addressing archi-
tectural needs such as high-level programming abstractions and adaptivity. However, the methodology
introduced by the swapped instructions makes this technique ineffective.

Database-oriented
The entire sensor network is viewed as a distributed and virtual database in this middleware approach.
It collects target data across the network using SQL-like queries. While this technique provides strong
programming abstraction and data management support, other IoT needs such as scalability, real-time,
and spontaneous interactions are not addressed. Furthermore, its centralized design makes it difficult
to manage the IoT network’s dynamic and heterogeneous features. The designs listed above have been
utilized in a variety of IoT applications and research areas. However, in the last decade, there has been
a significant increase in IoT projects. The types of middleware architectures are explained in Table 2.1.

Service-Oriented Architecture
Two major IoT trends have arisen in recent years: first, hardware is becoming smaller, more power-
ful, and second, the software industry is shifting toward service-oriented integration solutions. It is a
technique of thinking about and building information systems that have been utilized in corporate IT
systems for a long time. Smart sensors are shown as services for consumer applications in SOA-based
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Table 2.1 Types of middleware architectures

Types of
middleware

Techniques Advantages Drawbacks

Application-
specific

MidFusion [5] Best of sensors are selected from the
group

Quality of service is provided only
for limited algorithms

MiLAN [6] Specific Policy is used for the
integration technique

Heterogeneity characteristics of the
nodes are not addressed

Agent-Based

Impla
(Importance
Weighted
Actor-Learner
Architecture) [7]

Scalable to thousands of machines Updates in the policy can lag behind
the rule

SmartyCat [8] Navigation techniques are supported Control over the sensors is provided
by agencies

Agilla [9] Self-adaptive Suitable for low power consumed
devices

Tuple-spaces
TinyLime [10] Flexible architecture Resource management is constrained

TeenyLime [11] Flexible architecture and
self-adaptive

Scalability is less

Database-
oriented

GSN (Global
Sensor Network)
[12]

Data management support is
provided

Less scalable and not suitable for
heterogenous type of communication.

Service oriented
architecture

SStreaMWare,
USEME,
SensorWeb

Management of heterogeneous
devices is assured

Suitable for low power consumed
devices

SenseWrap [13] Sensors are virtualized and supports
resource discovery

Actuators cannot be virtualized

TinySOA [14] Supports resource management Complex algorithms are not
supported

SensorsMW [15] Strict Quality of service rules is
followed

Reconfiguration of sensor nodes are
difficult

MOSDEN [16] User friendly architecture Service discovery is difficult

Message
Oriented
Middleware

Event based
architecture [17]

Components and applications interact
with each other through events

Decoupling mechanism is absent

Publish subscribe
model [18]

Decoupling mechanism is assured Broker needs to be synchronized
with the publisher and subscriber

IoT techniques. The service interface is separate from the implementation and is crucial. Providers
characterize their services (sensor attributes) and place them on the market. Providers explain their ser-
vices (sensor properties) and make them available to customers. The standard for describing services is
Web Services Description Language (WSDL).

In [8], the state of the art of SOA-related middleware for wireless sensor networks is declared and
defined; it includes SStreaMWare, USEME, SensorWeb 2.0, OASiS, and others. Middleware proposals
include B-VIS, MiSense, SOMDM (SI), and SOA-MM. Wireless sensor networks have been proposed
for finding the solution. Their primary features include real-time monitoring, heterogeneous device
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FIGURE 2.5

Middleware approaches for the infrastructure challenge.

management, data collecting, and filtering. However, the assessment reveals that none of these systems
address all of the needs for sensor network administration in intelligent settings.

Message Oriented Middleware
MoA has long been used in network communications, notably in industrial networks such as inte-
grated production systems. It has an event-based design with a publish/subscribe communication model.
Components, programs, and all other applications interact through events in event-based architecture.
The publish/subscribe paradigm is used to send events from the sending-to-the-receiving application
components. The publish/subscribe model is a form of interaction that involves both publishers and
subscribers. The various middleware approaches with the infrastructure challenge and application chal-
lenge is shown in Fig. 2.5 and Fig. 2.6.

2.3.2 Middleware solutions in healthcare
An IoT middleware must confirm the variety of data sources and services in order to guarantee the
availability of services and statistics sources; hence the data should be available to the end user. As
the healthcare applications are sensitive, in the event of a failure of data, an IoT middleware should
continue to function. To ensure high-level system dependability, each component of the middleware
must be validated. For many IoT applications in healthcare, instantaneous information distribution is
important. In those situations, delayed data may be both worthless and hazardous. A delayed notice of
a fall monitoring application can result in a person’s death.

Many gadgets communicate with one another, and a lot of statistics are shared. These statistics might
be private, personal, or even information about one’s everyday activities. As a result, trust, security,
and privacy are critical concerns that must be addressed in any IoT middleware solution. All of these
middleware development projects have the same goal: to provide a framework that can enable a plug-
and-play adaption layer. Ambient Assisted Living (AAL) and medical applications are two types of



28 Chapter 2 Role of IoT and semantics in e-Health

FIGURE 2.6

Middleware approaches for the application challenge.

IoT applications that are currently being researched. Medical applications are mostly used in retirement
homes and hospitals to detect, prevent, and even monitor patient health.

AAL apps are often placed in a patient home to track and monitor his or her health condition
and activity. Middleware solutions have been developed in this area to meet the needs of the IoT and
healthcare fields. The Sphere project, which uses a clustered-sensor method, is included in this strand
[19]. Its goal is to provide a general platform that fuses sensor data to create rich data sets that may
be used to diagnose and manage a variety of health problems. Radhika and Malarvizhi [20] propose
another monitoring method in which body sensors are connected to a smartphone through a Bluetooth
to gain the data such as heart rate and body temperature. Its purpose is to combine data from various
wireless sensors into a network of body sensors mediated by a smartphone.

A case study is considered wherein the blood glucose sensor, heartbeat sensor values are measured
and sent to the Intel Galileo processor board. The choice of board varies depending on the user needs.
With the common connectivity framework, the board is connected to the broker model. The message
queuing telemetry transport is the publish subscriber model used in this case study. The broker model
preferred is muzzley. The model is then connected to the mobile application thereby heling in remote
monitoring. The MQTT models have various message types as shown in Fig. 2.7.

The Intel Galileo boards are connected to the device gateway. The device registry, authorization,
and authentication of the nodes are the initial steps undertaken before connecting it to the gateway. The
rules engine helps in transforming the messages to AWS services, and the device shadow enhances the
persistent connection between the things (Fig. 2.8).
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FIGURE 2.7

Message types of MQTT protocol.

2.4 Semantic interoperability of objects in e-Health
The IoT device connectivity with the middleware is assured thereby enhancing the semantic interoper-
ability with the nodes. Heterogeneous devices need to be interacted in the e-Heath industry to ensure
interoperability among the devices. This interaction allows semantics between the objects ensuring con-
nectivity and continuity of services. In the internet era, a lot of devices remain connected to the internet.
Ubiquitous access to data is mandatory as the devices are dependent on each other. Depending on the
value obtained from one device, the other device reacts. This event driven mechanism poses a major
challenge on the design of the devices as they are heterogeneous and interoperable among each other
[21]. The heterogeneous nature of the devices is due to the variety in the operating system, hardware
architecture, and logic behind the system. The Intelligent Information System will in turn address these
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FIGURE 2.8

IoT device connectivity with the middleware.

issues and bring about a seamless integration. e-Health is providing such a paradigm to the users en-
hancing and improving the data communication and integration between the end user and the doctor.
The emerging services is shown in Fig. 2.9.

Hence, semanticity in e-Health support telemedicine, and consumer health informatics align with
the mobile devices supporting the healthcare system. The two computers on either end interact with
each other and interpretation should be better on the receiving end. Presently, the challenge is more
on the document management and its interpretation along with the security. The semantic models pro-
posed by Ogden and Richards stand ahead when compared to the other models. The models use three
important components in the semantic triangle, namely symbol, concept, and referent. For the concept
to be understood in a better way, let us consider the semantic triangle as shown in Fig. 2.10 with an
example.

Doctor Chandran asks Doctor Raghul whether he remembers the pill prescribed for the patient
Mano for the strange fever. The pill indicates the symbol. The pill can be either generic or exclusive
for a particular disease. The concept of understanding about the pill by Doctor Chandran will lead to a
suggestion of the medicine. This conceptual understanding will lead to analysis of the symbol giving an
answer. Doctor Chandran has to attach the referent along with the symbol to enhance the correctness of
the answer. He can send a message to Doctor Raghul inculcating the symbol and the referent. He could
send a message such as, “Can you please send me the pill in which you prescribed to the patient Mano
for the strange fever last month”? The doctor will interpret the message correctly and send the pill as
required. This way of semanticity is needed as the application domain is critical as it may endanger the
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FIGURE 2.9

Emerging services.

FIGURE 2.10

Semantic model.

life of a human being. There can be two patterns incorporated in the semanticity. The patterns can be
either point-to-point or web semantic as shown in Fig. 2.11.

The modeling of messages is the first step in the model prescribed. The messages may be a text,
number, structured data, or unstructured data. The message should hold an entity and a fact to under-
stand the reference of the model. Once the referent has good clarity, the interpretation of the results is
also correct. UFR and LFR are the various facts and references present with respect to universal and
local. To ensure proper communication of the messages, the following steps in Fig. 2.12 have to be
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FIGURE 2.11

Types of patterns.

FIGURE 2.12

Steps to transfer the message from one end to another end.

carried out. The figure gives a good understanding of the concepts along with its tag and facts. The
messages are validated and then understood by the end-user [22].

2.5 Interoperability in healthcare
Interoperability drives the enhancement medium of the operation, which is going to work with the data
and information in the e-Health environment. Looking into the complexity in the e-Health sector, the
major outcome is the patient needs to benefit in a faster way without facing the hurdles, which he faces
in the real time scenario. That needs to be made effectively possible by integrating the interoperability
tasks as shown in Fig. 2.13.

The standardization of the healthcare information can be made by interfacing the integration with
interoperability. The major concern in the application entity is to perform the task [23]. Healthcare
is a complex domain with many vertical organizations in which many horizontal processes are to be
completed to have virtual growth. This makes most healthcare companies investigate semantic interop-
erability and invest in it.
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FIGURE 2.13

Flow of interoperability in healthcare.

FIGURE 2.14

Levels in interoperability.

2.5.1 Interoperability levels
The three main levels in the interoperability are:

• Functional interoperability
• Syntactic interoperability
• Semantic interoperability

Functional and Syntactic Interoperability
End user is the one who finally judges the operability. The capacity for the treatment can be improved
due to the shortened distance. This also increases the e-data entry in clinical records rather than focus-
ing for the manual entry of the patients and other relevant data. With the functional interoperability,
the cost of care, which includes reductant testing on the patients can be reduced. This also avoids
the development testing and integration costs through the usage of commonly developed standards in
implementing it as shown in Fig. 2.14.
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Table 2.2 Increasing capability of interoperation Turnista model hierarchy.

Semantic operability
This semantics make the syntactic distinct by getting the information to be exchanged as computer
processable so there is no end-user community involved in the system. All the shared and retrieved
information are a pre-processed one, as it can be directly fetched and used [24].

2.5.2 Turnista’s model
In the healthcare sector, the increasing capability of interoperation can be achieved by adapting different
models of IEEE standard. The model discussed here is the Turnista model. In the healthcare domain
like this model, there are many models that can be adapted for the efficient increase in interoperability.
From this model, it can be understood that the semantic and syntactic levels need to be integrated,
which benefits the end-user. For these syntactic levels, HL7 CDA (Clinical Document Architecture),
IEEE 11073, DICOM are some examples can be used for enriching the levels in the best way. For
this semantic level enhancement, it can be enriched using Snomed -CT, IHD-PCD RIM (Reference
Information Model), IEEE 11073, LOINC, etc. (Table 2.2).

Regarding the interaction between two or more computers when exchanging information, the
corrections are automatically interpreted by receiving systems, which needs to be assured by inter-
operability. By interfacing the computational facility with the interconnected units, the functional
interoperability has become a major challenge [25].

2.5.3 Semantic web
The overall semantic interoperability can be efficiently improved with the advent of the semantic web.
Knowledge extraction from the shared ontologies on the semantic annotations helps in metadata pre-
diction. Machine-to-machine level transition for automatic interpretation of information can be made
as machine interpretable markup by software agents. As was discussed earlier, for the clinical docu-
ments, CDA and RIM are some reference models for making the documents machine readable and can
be processed and constructed electronically. From there, the user can take use of the document. For
the clinical documents, the exchange model HL7 (Health Level 7) CDA can be used for exchanging
the information. Using the HL7 RIM (Reference Information Model) with the CDA, the information
is machine coded, readable, and pooled in the semantic web. This information can be accessed by all
the users. For the message received by the end-user, the local semantic ontology vendors need to re-
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FIGURE 2.15

Semantic web ontology.

construct the semantic ontology using RMA (Referent Mapping Activity) [28]. Anyhow, the message
needs to be sent with the appropriate meaning. For this condition to be satisfied, overall subjectivity of
the information shared and processed has to be maintained by centralized agents, which need to peri-
odically update the web. The overall system can be made user friendly. Anyhow, the semantic ontology
needs maintenance and the scalability in the semantic web should be protected and prevailed by the
vendors as shown in Fig. 2.15.

2.5.4 OpenEHR archetype
Some of the older proposed interoperability in healthcare is EHRs which is the Electronic Healthcare
Records. EHRs are defined as “digitally stored healthcare information about an individual’s lifetime
with the purpose of supporting continuity of care, education and research, and ensuring confidentiality
at all times” [26]. Simply put, it can be defined as collection of clinical related data about an indi-
vidual’s lifetime in the form of document structure. The same HL7 CDA, EHRcom and openEHR
are some standards that can be followed for healthcare interoperability. OpenEHR is a developing
archetype, which ensures semantic interoperability. They are developed by domain knowledge gov-
ernance tools like CKM (Clinical Knowledge Manager). According to the statistics given by CKM,
discussing openEHR foundations, there are nearly 227 numbers of archetypes for ensuring semantic
interoperability [27].

The openEHR is creative in the field for holding semantic interoperable EHRs. It has presented
the execution of the task. It plans to give another plan of action for the electronic clinical records.
The most recent release of Microsoft’s Connected Health Framework incorporates openEHR (ISO
13606-2) models as a component of its do-primary information design. The openEHR Reference Model
depends on ISO and CEN EHR norms and is interoperable with HL7 (Health Level Seven) and EDI-
FACT (Electronic information trade for organization, business, and transport) message guidelines [28].
This empowers openEHR-based programming to be coordinated with other programming and frame-
works.
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2.6 Conclusion
The IoT in e-Health is a cross-domain as it needs the knowledge of biomedical engineering, electron-
ics, data management, and network design [29]. Therefore, it is necessary to have a multidisciplinary
knowledge. The data that is collected from the healthcare sector is heterogenous and it is difficult to
process it [30]. The IoT in e-Health is highly related to human beings; therefore, it is important to
design a system that has a role of the human and machine interfacing system. In healthcare sector,
IoT faces a major challenge in maintaining the data collected from each and every sensor, which is a
huge amount of data every minute. These data can be stored in different formats for easy accessing
in the database. Maintaining such a huge amount of data needs standardization, such that the data can
be stored and accessed with high resolution. To integrate the healthcare sector with the IoT, all users
need to have direct access to medical services through their handheld mobile phones. These services
need their own sensors and integrating systems to function efficiently and to have a secure browser to
process the user request. This arrangement can be scaled up to a small level, i.e., at the hospital level or
at the bigger level, i.e., accessibility of data throughout the city. The user must be trained to use those
devices effectively. Expert involvement needs to be minimized through use of patient-friendly inter-
faces. To make the device more comfortable, one possible approach is to include the stakeholders in the
feedback process. This has a significant concern especially in the field of healthcare as data corruption
may lead to a serious threat to the patient. [31]. Security has to be ensured through the data fed into the
database and viewed by means of queries [32].
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3.1 Introduction and motivation
Today, data is the most common and extensive resource, which can differ not only in terms of con-
tent, but also in terms of different structure and data sources from which data come. Data can be both
structured, unstructured, or semistructured, as well as may vary in terms of the language, dictionary/vo-
cabulary used (if any), units of measurements, while sources may vary from very traditional relational
databases to the most striking and sometimes unexpected examples of the Internet of Things (IoT).
Even our iron, refrigerator, and kettle can collect and exchange with the data. In the medical sector,
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this is linked to a huge number of systems that communicate with each other and continuously increase
the number of sensing devices such as those used in smart healthcare systems. These data should be
collected not only by one device or system, but also processed and integrated with others, forming a
network for their further use. At present, there is little clarity on the universal way of managing het-
erogeneous data effectively. On the other hand, it should be acknowledged that attempts to reach this
objective are becoming more popular at both the universal and domain-specific levels, where semantic
approaches come as a rescue to this interoperability problem incurred due to heterogeneous data, which
can be both health history, sensing data, patient’s data, device, especially sensor data from IoT device,
and other types of data [1].

This problem is current and crucial in the context of (bio)medicine and (bio)medical studies, as data
come from a variety of national and international sources and in different forms. As example, in the
case of the Latvian Biomedical Research and Study Centre, these are: (1) (semi)internal data of the
Latvian biobank, including data of Latvian Genome Centre, Latvian Genome Database, Centre of Dis-
ease Prevention and Control (SPKC), and cofunded enterprises, where the digital data are collected and
processed, (2) doctorates and their surveys completed by hand, (3) external national and international
systems such as registries or medical institutions coming in the form of both structured and unstructured
data. These data are often difficult to integrate into the internal system, taking into account the different
types of notation for different objects largely dependent on the system, person, or process that acquire
and process the original data in the original source. These problems have a practical nature with regard
to the Latvian Biomedical Research and Study Centre, which face challenges when the data need to
be processed and entered into their system (data types violation, data formats, different nomenclatures,
incorrect designs of systems, or databases used, etc.) for their analysis of patients and diagnosis, for
data-based research that they carry out and their subsequent reuse by stakeholders involved. At the mo-
ment, a number of ad hoc approaches, which vary from one case to another, are utilized. Although it
is difficult to complain about the current effectiveness of the research center concerned, which is suffi-
ciently competitive and collaborates actively with many third parties, we argue that its efficiency could
be greatly improved if more modern data management solutions were introduced.

This issue is also of theoretical nature and important to the scientific community, as there is no one
universal solution or “silver bullet” at the moment. According to [35,36], the healthcare domain needs
advances in current big data management approaches since there is a lack of fully Findable, Accessible,
Interoperable, and Reusable, thereby complying with FAIR, data resources. This is a matter of great im-
portance, particularly for institutions related to biobanks, and also because the European Union signed
a joint declaration on cross-border access to the 1 million human genomes by the end of 2022 [54]. But,
as [55] stress, handling data on a large, transnational scale does not go without challenges. The authors
emphasize that researchers and clinicians will need remote access to human data outside the country’s
borders to assemble and manage very large cohorts or identify people with a rare phenotype. They
stress that at present, each European country sets its own regulatory/legal framework for the processing
of health and genetic data. Even more, genetic and associated data collected of that generated through
healthcare are not shared widely compared to research data.

In practice, there are sometimes quite primitive and manual ad hoc data integration mechanisms.
However, the most appropriate option for these trends, especially for larger data sets and larger orga-
nizations and medical-related practices, is the use of ontology and semantic models, which are based
on them. They are particularly important for widely-studied topics, since ontologies standardize ter-
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minology and determine relationships between the elements under consideration, thereby facilitating
researchers and combating unresolved issues.

A natural question to be asked is whether there is a difference between typical widely-used ontol-
ogy and those for the (bio)medical sector? According to [29] unlike ontology developed for Artificial
Intelligence (AI), which highlights formalism and first-order logic, domain ontology such as ontology
developed for biomedical informatics prioritize data sharing and interoperability. Thus, the objective
of these ontologies is to disseminate structured, controlled vocabularies and to support data annotation
where experimental data are associated with terms in ontology [37]. This task-oriented approach to the
development of ontologies is a distinguishing feature of healthcare and biomedical ontologies [38]. For
example, the Human Phenotype Ontology (HPO), which is one of the most widely used ontologies for
phenotypes, standardizes and promotes the consistent use of phenotype terminology, and determines
the relationships between phenotypes at both semantic, logical, hierarchical levels [29,31]. Their suit-
ability and increasing popularity can easily be explained by the emphasis on concepts of the modeling
and hierarchical relationships between them, which is unquestionably the main feature of ontology. It
plays a key role in data integration, knowledge representation, and decision support systems (DSS) [2].

Virtual reality (VR) is another emerging technological development in the healthcare domain [6].
Virtual reality applications provide the visualization tasks of treatment, disease analysis, diagnosis,
and prevention. Semantic portals also play an important role to visualize the ontologies as a graphical
representations and help to make the user-interface dashboards [64].

While the concepts and benefits of both semantic models and medicine-related ontologies have been
covered in the previous chapters, this chapter takes a step further and looks at the visualization of on-
tologies. Although ontology can be seen as an important step toward more efficient management of
heterogeneous data, where heterogeneity can appear both in the data and in the data sources, visual-
ization is often seen as a facilitator and a tool of more efficient use of ontology. This section therefore
poses the following research questions:

RQ1: What a visualization term stands for in the context of ontology and/or semantic models? What
types/methods of visualization exist? And when and how could they be beneficial?

RQ2: What specific aspects should the institution or particular project take into account to choose
and implement healthcare ontology visualization? What specific features (if any) should affect
choice? Does a silver bullet exist?

RQ3: What is evaluation in the context of ontology/semantic models? What methods of this evaluation
exist? What specific aspects should affect choice?

In order to meet the aims, the chapter is organized as follows: Section 3.2 provides an overview of
the concept of visualization, both in very general, ICT- and semantic models-related areas, as well as it
classifies existing approaches and emphasizes the key cornerstones. Section 3.3 is devoted to evaluation
of both an ontology itself and ontology visualization. Section 3.4 sets out initial results and discussion,
and the paper concludes in Section 3.5 highlighting future directions for research and clarifying the
primary contributions of this chapter.
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3.2 Role of visualization: background
3.2.1 Visualization concept and its cognitive capacity
Let us define the overall role of visualization with a special interest in computer-aided artifacts. It
is not a secret that visual information is easier and faster to capture, perceive, modify, or transform
compared to textual information. This is related to our cognitive processes. Visualization externalizes
knowledge and helps to share with them. This can lead to more successful solutions at very different
levels, allowing users to get information that might otherwise be difficult to capture [3,7,9]. Even more,
visual artifacts help to relieve the human working memory [5], thereby improving thinking capacity.
This, however, can emerge new ideas [8,10]. Visual artifacts group relevant information by clarifying
how and whether concepts are related [5], which reduces the effort that would otherwise be needed to
seek elements to make problem-solving inferences [4]. In other words, according to previous studies
[12,17,16], visualization can increase cognitive memory and processing resources, reduce the search
for information both in terms of efforts needed from the human and the overall time for process to be
completed. In addition, it is capable to improve the detection of patterns (if any), enable perceptual
inference operations and attention mechanisms for monitoring, encoding information in a manipulable
medium. It allows the processing of large volumes of information, keep an overview of the entire picture
pursuing details, keep track of things, and perform an abstract representation of the situation using the
omission and recoding of information.

3.2.2 Visualization in ICT, healthcare, and biomedical sectors
The above mentioned benefits are applicable to all the information we deal with in the real world and
are particularly representative for human-computer interaction (HCI), where visualization is the main
factor. This also applies to data and knowledge management, particularly in domain-specific fields other
than ICT, such as the medical sector. And the larger the object of interest, such as a single database
or system, the more valuable visualization becomes. It makes it easier to understand each particular
element and its relationships with another element (if any) and to manipulate them more easily.

In the context of ICT, visualization was the subject of debate, even for classical databases, which
we have been forced to use decades ago. More specifically, Jog and Shneiderman [57] highlighted
that the exploring of large multiattribute databases is greatly facilitated by visual representation of
information as it enables users to dynamically query the database. There are also known later examples,
such as migration to graph databases [14], which has been achieved with the support of Neo4j and
GraphQL. The built-in graph representation of data sets ensured better manageability and sustainability,
not only in terms of access and use of data, but also in a compelling overview of data quality and
data accuracy. Today it is even more so. More and more organizations cooperate and geographical
borders are no longer a restriction even in times of the COVID-19 pandemic, where these borders can
affect our daily activities. This also applies to the cooperation of sectors, with collaboration becoming
increasingly interdisciplinary. This leads to a significant increase in the volume and diversity of data
storage facilities, which as a result also increases the need to visualize data and relationships between
multiple entities, thereby making them more manageable, actionable, easier to perceive, traceable, and
reusable. In fact, it boosts the FAIRness of the data, more precisely their Findability, Accessibility,
Interoperability, and Reusability [13], which become at least partly supported.
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Given that each information system has the data they are dealing with, it is clear that the solutions
allowing the parties involved to process these data, i.e., collect, process, etc., should not respect limita-
tion on people skills and knowledge—they should be as user-friendly as possible and facilitate users’
interaction with data storage in all possible ways. This also applies to semantic models that were con-
sidered suitable only for IT people some time ago. However, these days it is observed that they become
a daily phenomenon, and more and more non-IT people use them because of the wide range of possi-
bilities they provide, where in addition to more coherent and simpler navigation by moving users from
one concept to another in the ontology structure. Another valuable feature is that, by establishing the
relationships between the concepts, it enables automated reasoning of data. Such reasoning is easy to
implement in a semantic graph database where ontology is used as semantic schemata [58]. In addi-
tion, ontology is easy to extend because relationships and concept matching are easy to add to existing
ontology. As a result, this model develops with data growth without affecting dependent processes and
systems if something goes wrong or needs to be changed.

However, although the list of benefits that could be gained from the use of ontology is impressive,
sometimes people with no domain knowledge face challenges [2], so the facilitating techniques should
help to tackle them. Some of these issues can be resolved by means of visualization aimed at improving
the understanding of the overall state of the art, i.e., data and their interrelation, both within and outside
the organization, their accuracy, correctness, and complexity as well as an existence of patterns. This
problem is even more complicated when healthcare systems are under question (also in line with [19]).

The benefits of the visualization of data and information were seen in the (bio)medicine and
(health)care-related sectors even before the concepts of semantic models and domain-specific ontolo-
gies have been involved. According to [40], information visualization techniques have great promises
to improve the quality of medical care. Rind et al. [40] emphasize that the benefits extracted from data
visualization are observed in (a) analysis of patient medical history, including monitoring the overall
condition of the single patient, (b) analyzing a patient’s response to a treatment, and (c) aggregating
multiple patient records in the cohort as a baseline to compare a development of individual’s symp-
toms, etc. Visualization tools, even those, developed years ago, i.e., different types of charts and plots,
were useful decision-making aids for clinicians when prescribing treatment for acute or chronic pa-
tient problems. These visualizations were often focused on complete Electronic health records (EHR),
which could be very heterogeneous and a combination of both structured, semistructured, and unstruc-
tured data. However, while they were widely used and recognized as sufficiently efficient for general
cases, there was little focus on more specific healthcare domain-related visualization and a lack of more
advanced solutions has been noticed.

According to Iakovidis and Smailis [59], the diversity of data and information sources and the
increasing amounts of data produced by different sources continuously, pose significant challenges
in data mining. Knowledge gathered by manual annotation or extracted by unsupervised data mining
from one or more “feature spaces” should be modeled using generalized high-quality spatial semantics.
Semantic models based on such ontology have been proposed for a variety of medical applications,
including computer-aided reporting, medical decision making, and data mining.

But does the above mentioned benefits of visualization still apply to ontology, i.e., whether a simple
visualization of artifacts–elements, properties and relationships (or just a few of them), bring all those
benefits? And why, given all these benefits, this is not a de facto standard for all models proposed? These
questions are sufficiently complex, particularly in view of the fact that the ontology visualization is a
relatively broad concept where the visualization term can be divided into different methods depending
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on the purpose to be achieved by their use. The next section therefore refers to the visualization of
semantic models and diversity of definition and application of this concept.

3.2.3 Basics of visualization
Visualization as the same as modeling is understood as a tool for communication. However, in order to
make them valuable and appropriate for the establishment and maintenance of “communication,” some
prerequisites need be taken into account. Let us first refer to most general principles that are applicable
to all types of visualization. All types of models are generally understood to be a set of affirmations,
premises, constraints, or rules to gain a higher abstraction of the problem [21,20]. The term abstraction
is generally defined as the ability to ignore information that is not of interest in a particular context
[21], with three basic forms: reduction, generalization, and classification. The meaning of reduction
and generalization implies from their naming, however, by the classification Mellor means: “grouping
important information based on common properties,” which is met by default, considering the nature
of semantic models. However, depending on the interpretation of this concept and the level to which
it is applied, it can be considered as only partly resolved. As a counterexample, Dudáš et al. [16] have
stressed that the grouping can be used in spatial encoding by emphasizing similar concepts that should
be placed closer to each other, thereby favoring users’ comprehension and understanding, allowing
them to be easily interpreted as similar concepts at the cognitive level.

In short, the main consensus that should be achieved in creating visualization and how to make a
comprehensive and whole-grained overview of the entire picture easy to understand, while not overfill-
ing it with too many details. But, depending on the application domain, other prerequisites may appear.
These prerequisites for the healthcare domain will be emphasized in the following subsections.

3.2.4 Visualization of semantic models
First, it should be understood that visualization of the semantic model is not a visualization in its
traditional sense when a textual artifact is replaced by an image. Visualization rather complements the
textual representation of the artifact. This is found to be more effective for human cognition, where it
can be understood as an intuitive way to understand, discover, detect, and interpret data [14,11], and as
a facilitator for more effective data exchange across multiple sites.

While the visualization of semantic models is often understood as “by default,” the number of stud-
ies covering the topic of visualization is significantly lower compared with those covering semantic
models. More precisely, our digital library analysis, which query them as respective keywords, shows
that only 3% of semantic models-related studies mention visualization. What is more, the understanding
of the “visualization” term varies in these studies. While some study “visualization,” they understand
the graphical representation of elements and their relationships—graphical ontology editors such as
WebVOWL [45], BioOntoVis [46], OWLgrEd [33], Welkin [60] to name only a few, other focus on
the graphical construction of queries (such as SPARQL queries) over a predefined data schema (for
instance, OptiqueVQS [41], OZONE [42], VisiNav [43], and ViziQuer [44]). In addition, as we will
discuss in the following sections, the visualization can also be used as an ontology evaluation tech-
nique. The aim of the visualization tool can also vary, i.e., it can be used not only to create a visual
representation of ontology that will effectively display all the information, but also to allow the user to
easily perform various operations on the ontology [19], where the nature of operations can vary. Here,
Katifori et al. [19] stress that the visualization of ontology is used and can be useful at three levels,
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i.e., ontology design, management, and browsing levels. Another classification is provided by Dudas
et al. [26]. It slightly differs from the previous one and distinguishes at least four different high-level
use-cases of ontology visualization methods:

• learning is used to explore and learn ontology for its further use. Suitability for a specific purpose
is particularly important, given that many existing tools are tailored to a specific task or use special
types of diagrams that need to be learned first to understand the visualization (also in line with [25]);

• editing is used to manipulate visualized ontology, for instance, by drawing lines between classes to
add new triples that link classes, and may be less demanding for users who are little familiar with
the textual OWL syntax (only a few of tools support visual editing);

• inspecting is used to check the already defined ontology to find errors (if any), missing or inaccurate
elements, or links between elements. It is considered as well suited for checking ontology for model
adequacy, i.e., how well the ontology covers its domain;

• sharing is used if the creation of figures based on the ontology developed is needed, i.e., if a specific
part of or all ontology should be provided to an external third-party or article, book, blog, or website
of the project under development or in other form of documentation and dissemination that is not
directly related to the actual use of ontology.

The “editing” method is highly valuable and beneficial for users with preliminary or basic knowledge
of the textual OWL syntax, where graphical representation should be much easier to understand and
manipulate with. However, “learning” and “inspecting” methods are more beneficial for users with
advanced knowledge, who can benefit from the visualizations ability to give an overview of the ontology
and from corresponding filtering capabilities that allow us to focus on specific parts. To make a more
clear understanding, in Table 3.1, we summarize these methods by providing (a) a purpose of use, which
we divide into (a1) development or (a2) use, (b) the required level of details, where we distinguish it as
(b1) high, where the overall overview, such as class hierarchy, is sufficient or (b2) low-detailed view,
including axioms associated with classes, (c) some use-cases examples, which we have derived from
[16], with minor changes regarding purpose of use. Here, in contrast to Dudas et al. [16], we assume
that the editing method is suited for both not only development, but also use, i.e., editing could be
beneficial for daily tasks. In addition, for each of the methods covered, we provide a list of the tools
to be used and considered to be the most appropriate, where our conclusion is based on a review of
relevant studies [16,19,25], etc., which have undergone testing of these tools.

This chapter does not suppose testing existing visualization tools. First, this was done several times
by other researchers (including in recent years), and second, we found that the choice of the most
appropriate tool is highly dependent on tasks. Third, the ranking is often becoming outdated, which is
based on both the development and evolution of tools that are modified and improved continuously, and
the fact that some of them are developed in a specific project, and then when the project is completed,
the support of these tools is no longer provided. This was the case for many tools that we have selected
for further inspection in this study (including GoSurfer).

Although this classification seems popular and widely used, we would rather classify visualization
methods depending on the level of knowledge and skills of its users, i.e., learning, using, inspecting,
where the methods can overlap:

• learning method gives users and medical staff in particular greater benefit to understand whether
they will be able to adapt to it and its use will facilitate their work and its productivity;
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Table 3.1 Summary of ontology visualization methods.

Method Purpose Level of
detail

Use-cases Best tools Main characteristics and
features

learning usage high
(overview)

deciding about the suitability
for a specific
purpose—analyzing an
ontology to create or
annotate data with it

KC-Viz allows to automatically
select “important” concepts;
displays an overview of large
ontologies

editing develop-
ment/usage

low building a new ontology;
adapting an existing
ontology, i.e., by adding
entities or customizing it, to
fit a specific purpose

Jambalaya,
OWLGrEd

allows text search for entities
to be edited and easy access
to properties of an entity

Inspecting development low building a new ontology;
detecting structural errors;
adapting an existing
ontology; checking for
model adequacy; analyzing
an ontology to map it to
another ontology

Ontodia,
Jambalaya
and
KC-Viz

allows focusing on the
desired part to be inspected

sharing usage high
(overview)

creating illustrations of
selected parts of an ontology
(or its overall content and
structure)

KC-Viz,
Ontodia,
Jambalaya

allows limitation to a
selected part of the ontology;
enables the user to manually
layout the visualized entities

• inspecting is mostly beneficial for data operators and managers who maintain the system, although
compared to traditional data storages such as SQL and NoSQL databases, there is a greater like-
lihood that medical stuff will be involved here because of the strong focus on domain-specific
elements, their properties, and relationships;

• using, however, is what Dudas et al. [16] call editing.

This diversity has risen the question what kind of visualization methods can be defined in addition
to them? What else can we meet named as “visualization,” but with another semantic meaning, which
we have briefly addressed in this section and present in Fig. 3.1. In this chapter, we mainly treat the
“visualization” concept as an opportunity to use and edit ontology in a graphical way. Although this
division was domain-agnostic, in the next section we will cover the concept of ontology visualization in
health(care) and (bio)medical context. This will include answering the following questions: What types
/ methods of visualization exist? And when and how could they be beneficial? What specific aspects
should the institution or particular project take into account to choose and implement in healthcare
ontology visualization? To determine this, we will refer to both our experience and scientific literature
on this issue and identify at least several categories on the basis of which visualization techniques
can be classified. Thus, in the following sections, we will cover these categories, which should form a
knowledge base on this subject and allow us to identify relevant key aspects to be taken into account
when selecting the ontology visualization tool.
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FIGURE 3.1

Ontology visualization methods.

3.2.5 Visualization of ontology and semantic model in healthcare and
(bio)medical sectors

Even though some time ago there was the concept of “ontology,” which data scientists were forced
to adapt to the specificalities of the system, today there is a great variety of ontologies tailored to the
specific domains. As an example, as a representative of Latvian National Biobank (BBMRI Latvian
Node), let us mention the ontology inherent to our area—OBIB—an ontology built for the annotation
and modeling of the biobank repository and biobanking administration. The reason and benefits de-
rived from such domain-specific ontology are based on the fact that they are adapted to a specific area
of application, following the common agreed guidelines or preferably standards adopted in the given
field. When taking a step back to OBIB (based on OWL language), it is based on MIABIS (MIABIS
Core 2.0), i.e., Minimum Information About Biobank data Sharing, which standardizes data elements
used to describe biobanks, research on samples and related data, according to general attributes to de-
scribe biobanks, and sample collections and studies at an aggregated/metadata level [56]. Even more,
although it could be assumed that the biobank-specific ontology should primarily support and facilitate
highly medical-oriented data such as sample-related data, they are well suited for the acquisition and
processing person-related facts, more precisely patient-related, such as “biological family relationship”
and “relationship by marriage” labels being the SubClassOf “family relationship.” This significantly
simplifies the work of data scientists and data managers, compared to the building of relevant data
schemes in relational databases. In some cases, these ontologies are also adapted to specific countries.
As an example, BRO-Chinese—Biomedical Resource Ontology with Simplified Chinese annotations,
OCMR—Ontology of Chinese Medicine for Rheumatism, ADHER_INTCARE_SP—Adherence and
Integrated Care in Spanish, MDRFRE—MedDRA French, Medical Dictionary for Regulatory Activi-
ties Terminology (MedDRA), French Edition.

On the one hand, this could naturally raise the question of their compatibility with those from other
countries. However, it is not a problem today, and among very traditional solutions, some although
intuitive but previously lacking, have been proposed. One of the examples is MLGrafViz (plug-in for
Protégé), which allows the user to translate and visualize the ontology into 135 languages by means of
integration with the open-source Google translate API proposed by Florrence [32] (we will cover it in
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a bit more detail in further sections). Unfortunately, none of these ontologies cannot be considered as
universal for the whole medical sector or at least its particular subdomain.

Today, with introducing and increasing popularity of ontologies, including domain-specific ontolo-
gies, the number of visualization techniques and tools developed to study patient EHRs has increased
significantly. However, a “silver bullet” still has not been found. A natural question arises—why is this
the case?

First, the vast majority of medical organizations and systems deal with data falling within the cate-
gory of large ontology. Although a uniform and well-defined definition of the “large ontology” concept
does not exist, it can be characterized by a large number of elements assigned to sometimes complex
properties and multiple relationships between different elements. The number and diversity of the var-
ious ontology available today is huge. As an example, BioPortal—the world’s most comprehensive
repository of biomedical ontologies has 905 ontologies with a total of 13,495,119 classes, 36,286 prop-
erties and 55,648,584 mappings. Another example is OLS, i.e., Ontology Lookup Service—biomedical
ontology repository that provides 264 biomedical ontologies supporting 6,504,429 terms and 32,832
properties. Just a few examples are: Alzheimer Disease Relevance Ontology by Process (AD-DROP),
Cancer Research and Management ACGT Master Ontology (ACGT-MO), Biomedical Image Ontol-
ogy (BIM), Biomedical Informatics Research Network Project Lexicon (BIRNLEX), etc. The popular
Gene Ontology project’s sequence database, which is a part of a larger project known as Open Biomed-
ical Ontologies (OBO), deals with huge amount of data that, when processing using cluster analysis
results, presented researchers with a directed graph (Aleksakhin, 2012) that has 10,042 vertices and
24,155 edges and 3918 are unconnected components. It has 1 root, 2729 nodes and 7312 leafs (terminal
nodes). This makes its visualization by means of traditional and widely-known ontology visualization
tools, such as yEd (graph editing tool using hierarchical layout) inappropriate because the visualization
becomes too “messy” due to so many artifacts.

Thus, in view of the likely need to use large ontology and the prerequisite for user-friendly tools
to support and facilitate their use by users who may not have IT knowledge, a list of more stricter and
more advanced requirements for visualization techniques implies. More precisely, the need for more
advanced techniques is more expressive for the (bio)medical sector. The so-called “concept clustering”
[16], where the selection and/or aggregation of key and/or the most relevant concepts of ontology and
the limitation of visualization to those called “smart” filtering, becoming almost “must have” for them.
This should make it easier for users to further customize visualization and navigate it, especially when
the (large) ontology is not hierarchically organized. But, obviously, it is not the only feature to be
present in “suitable” visualization tool.

Second, the needs imposed for a tool depend to a large extent on the task carried out by the data
user and vary significantly from one case to another. Thus, efficient management of data should either
use a very advanced tool with a list of predefined functionality, including the ability to switch between
visualization techniques in addition to a broad range of general features, or a set of different tools
should be used. The later option is not the best, so ad hoc solutions are sometimes developed to meet
the needs and expectations of data users. But this also requires significant knowledge based on what
should be taken into account.

3.2.5.1 Task-dependency of visualization
Let us first refer to the question of how the task can affect the visualization tool and the requirements
posed for it. This question has been thoroughly addressed in [47]. The authors revealed that depend-
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ing on field of bioinformatics, i.e., molecular structure, genome and sequence annotation, sequence
analysis, molecular pathway, ontology and taxonomy, phylogeny, and the list of crucial features to be
in-built in the tool differs significantly. As an example, when inspecting the molecular structure, the
expected features of the tool are zoom, filter, and detail-on-demand, but the expression profile analysis
(microarray) does not consider them important, where an overview is more important. The later case,
however, sets out an additional requirement for geometric techniques that must be in place and support
a colored mosaic and scatter plot, as well as hierarchical techniques such as a graphical tree, expand-
able tree, and treemap. At the same time, the genome and sequence annotation, which mainly deal with
1-D linear and circular data, benefits from interaction met by visualization technique, where concepts
such as semantic zoom, magic lens, and brushing play a critical role in efficient data management. This
makes it difficult to propose a single “one-fits-all” solution because the requirements are determined
by the specificity of the task, which could be well known to the domain expert but not always is well
known to the developer of the tool. Therefore, even meeting the needs of several medical-sector related
subdomains, there could be those overlooked for which these tools will not be suitable.

There are, however, some attempts to create a slightly more comprehensive solution suitable to more
than one application area. This was presented in [29], who has tried to avoid the use of different tools—
one per task—by developing a more general tool suitable for a wider range of phenotype-related tasks,
although only one subdomain is covered. To achieve this goal, he has proposed an Ontology-Based
Analytical Abstraction for visualization. This was obtained by developing first the three case-specific
tools called PhenoStacks, PhenoLines, and PhenoBlocks, where: (1) PhenoBlocks—supports visual
comparison of phenotypes between patients or between the characteristics of patient and disorders, (2)
PhenoStacks, which is a visual analysis tool that supports the inspection of phenotype variation in cross-
sectional patient cohorts, (3) PhenoLines—an analysis tool to interpret the subtypes of disease derived
from the application of topic models to clinical data—this allows a comparison of the prevalence of the
phenotype within and between disease subtype topics, thereby supporting the characterization of the
subtype, a task that includes the determination of the dominant phenotypes of the proposed subtype,
exposure age, and clinical validity. Each tool has been both designed, developed, and validated involv-
ing people carrying out the task in consideration. This allowed the author to formulate the so-called
pillars on which further visualization tools related to the medical sector should be based, divided into
(1) topological simplification, (2) visual comparison, and (3) generalization. Topological simplification
should cover problems such as unified representation, elimination of redundancy, and control of the
level of detail. Visual comparison, however, applies to pairwise comparison, many-to-many compar-
ison, and trend comparison. In this way, according to the authors’ findings, at least a slightly more
general tool can be developed. However, as in the previous case, the involvement of the domain expert
and the acknowledgment of all related tasks should be taken into account.

Another type of classification is related to the visualization technique underlying the ontology vi-
sualization, i.e., a graphical representation, in which it is represented. This type of classification also
includes a debate on the best choice, where the consensus has also not been reached. The next section
is devoted to visualization techniques underlying visualization of the semantic model.

3.2.5.2 Visualization of semantic models: classification by the visualization technique
Generally, ontology and semantic model visualizations depending on the visualization technique, are
divided into indented lists and graphs [23,16,25]. Ontology visualization as a graph is considered to
be a very natural way to depict the concepts and relationships structure in a domain of knowledge
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(in line with [25]). However, although the graph is a very traditional and intuitive way of representing
knowledge, there are studies that prove that indented lists, such as Protégé Class Browser, are sometimes
more efficient compared to graphs [23,30]. Yang [30] explains this in simplicity and for users familiar
with this visualization technique, which is very similar to classical file system navigation. Perhaps this
is the reason why they are the main tools used for ontology editing.

Another study, which attempts to determine which type is better, is an eye-tracking user study
[23] aimed at evaluating and comparing the two above-mentioned techniques, when they are used by
biomedical staff who are most likely not familiar with them. However, results of around 500 MB of
eye movement data containing around 30 million rows of gaze data generated by a Tobii eye tracker
did not allow such a conclusion to be reached; however, they found some evidence suggesting that
indented lists could be a little more efficient to support the search for information, while graphs are
more efficient in supporting the processing of information. Glueck [29] stresses, however, that in the
biomedical domain, the preference is usually given to tree structures obtained by converting graphs into
hierarchies, duplicating nodes with multiple parents, so that large data sets are more easily understood
compared to hierarchical visualizations. In the context of this chapter, however, it would be beneficial
to note that this experiment involved biomedical staff that, on the one hand, allows to bring some
results suited for the purpose of this study, and on the other hand, demonstrates to representatives of
(bio)medical institutions and organizations that ontologies are well suited for this sector.

However, in addition to these traditional types, a few more visualization techniques may be distin-
guished. A study aimed at presenting techniques of ontology representation and categorize their features
to help select the most appropriate, which is often considered to be one of the most comprehensive re-
views on the topic, is [19]. Katifori et al. [19] divide them into: (1) indented list, (2) node–link and tree,
(3) zoom’able, (4) space-filling, (5) focus+context or distortion, where the overlapping of methods is
allowed. Moreover, depending on the space dimension used by the relevant tools, the methods can be
divided into 2D and 3D.

2D use the screen space as a plane and do not use any notion of depth. The authors acknowledge the
so-called 2.5D, which is applied to 2D visualizations that use a perspective view to create a 3D sense
without permitting movement or manipulation in the 3rd dimension. However, most studies still con-
sider them to be 2D. 3D visualization method; however, it has been found to be less suitable for most
users, particularly those not familiar with them previously and so-called novice users (also in line with
[19]). In addition, it requires more advanced system resources to ensure both representation and naviga-
tion, which is rarely available. Therefore, the 3D methods will not be considered in this chapter, the less
likely to be suitable for users representing the domain. Florrence [32] derives a few more techniques,
where the above list is supplemented by the so-called (1) Squartified graph, (2) Grid-Alphabetical and
some other more exotic types. Dudas et al. [16] in addition to the most classical types, divide them into
(1) label-based and (2) layout-based. As their name implies, label-based techniques give more attention
to labeling and their naming, thereby contributing to a better level of detail. However, they are divided
into (1a) UML-inspired, where the node label consists not only of the name of the entity it represents,
but also of other information, such as a list of data properties associated with the class represented by
the node, and (1b) name-label-only, where each node is labeled by name only, and does not (or only
very few) textual information. The first group is more popular and is presented by such widely-known
examples as Ontodia, OWLGrEd, TopBraid Composer, and VOWL. They are considered relatively easy
in use, but not for all users, because they require some knowledge of UML class diagrams. However,
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although they are not considered well suitable for very specific domains such as (bio)medicine, they
are still developed and adapted to them and sometimes turn out to be very efficient in use.

A layout-based category is far more richer, represented by: (2a) force-directed layout/spring em-
bedded—simulates a physical system where the edges act like springs, while nodes repel each other
and drag forces that ensure the nodes covered. By correctly setting the magnitudes of the forces, visu-
alization reaches a balance where nodes with the most connections to other nodes are arranged in the
visualization center and the least connected nodes are at the outer edge of the acquired graph. Although
it tends to avoid crossings of edges and overlaps of nodes, it is characterized by the inherent random-
ness of the most force-directed algorithms, which result in a different arrangement of node each time
they are executed. This group is represented by tools such as Jambalaya, NavigOWL, Neon Toolkit
ontology visualizer, OLSVis, Ontodia, SOVA, TGViz, WebVOWL, Cytoscape, VOWL 2, and GLOW;
(2b) tree layout/treemap (already covered above) representing the ontology class hierarchy, where the
entity at the top of the ontology hierarchy is visualized at the top of the display area. Its children are
placed at one level below the root node, according to the hierarchy, while their children are placed at the
second level below them, etc. While compared to the previous category, the layout remains unchanged
in each run of the algorithm, and if the inheritance structure remains unchanged, this category is typi-
cally characterized by a risk that nonhierarchical relationship links will cross other links and nodes due
to the level-based node arrangement, and a lack of consideration of other property relations (mainly
classes). This group is represented by tools such as Jambalaya, OWLViz, GLOW, and OWL-VisMod;
(2c) radial layout, where the root entity is placed in the center of the display area, and its children are
placed in an orbit around it, which children are placed in the next orbit, one step further from the center,
etc. It may be more space-efficient than the classical tree layout, because the number of nodes usually
grows at each level of hierarchy. This group is represented by tools such as OntoStudio, SOVA, and
GLOW; (2d) circle layout in which entities are arranged so that they form one large circle. This allows
to visualize a large number of relationships between entities, especially if there is no need to display
individual labels of the relationships. Probably the most expressive example of it is NavigOWL; (2e)
inverted radial tree layout in which nodes are located in a circle that consists of several concentric rings
if there is a hierarchical relationship between entities represented as nodes. Ring parts represent nodes,
where nodes appear at the top of the hierarchy as parts of the outer ring, where their children are in the
ring one level closer to the center, etc. Links start and end in the nodes in the inner ring to specify other
nonhierarchical relationships, as is in NavigOWL.

Other researchers have observed that although graphs rendered in force-directed or hierarchical lay-
outs often result in appealing visualizations, most of them, focus only on some aspects of ontology.
For instance, OWLViz, OntoTrack [61], and KC-Viz [62] represent only the ontology class hierarchy.
OntoGraf and FlexViz [63] represent different types of property relations, but do not show data-type
properties and property characteristics required to fully understand ontology. While there are some ex-
amples attempting to provide a more comprehensive overview, they often fail because the visualization
becomes messy, where the various elements are often difficult to distinguish, particularly if additional
features such as zoom and filters are not supported. Some steps to resolve this were taken by TGViz
[66] and NavigOWL [67], which, while using very simple graph visualizations, where all nodes and
links look the same, have used different colors to allow the user to distinguish between them. Lohman
[25] found the attempts made by GrOWL and SOVA [65] more successful, because they define more
elaborated notation using different symbols, colors, and node shapes. But this negatively affects the
readability of visualization, which sometimes becomes characterized by a large number of crossing
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FIGURE 3.2

Ontology visualization taxonomy.

edges. Although some tools deal with this issue by making additional efforts in this regard, this is done
in very rare cases. In addition, they become inappropriate for normal/typical users, since the notation
of both rely on symbols from description logic and abbreviations.

Another nontypical but today very crucial observation is made by [32], who finds that there are very
few tools supporting natural languages (NL), where one example is the OWLGrEd tool of Latvian ori-
gin [33], which has added a verbalization to their graphical ontology editors by means of a controlled
natural language (CNL). So, the author proposes a multilingual ontology visualization plug-in for Pro-
tégé, called MLGrafViz, developed as an extension of OntoGraf, which, in contrast, allows the user
to translate and visualize the ontology into 135 languages. This is achieved by means of integration
with the open-source Google translate API. The authors have also ensured an opportunity to switch
the layout between the Radial, Spring, Horizontal Tree, and Vertical Tree and uses Zoomable tech-
niques, which is considered a “good practice.” It makes the tool more universal, when depending on
the task, which can require another visualization technique, i.e., there is no need in change of the tool.
In addition, it facilitates sharing the defined and visualized ontology, which makes this new proposal
highly competitive and prospective, supporting the elimination of differences in geographical location
and language among users of ontology.

In view of this diversity, we present an ontology visualization tool taxonomy, while Table 3.2 sum-
marizes the most widely discussed graphical representation techniques, giving them a brief description,
pros and cons, as well as some examples found as the most competitive.

To sum up, visualizations of ontologies may be classified at least in (a) space dimension-based visu-
alizations and (b) technique-based visualization in accordance with Fig. 3.2. Dotted lines in refer to less
popular and commonly accepted categories which, however, are useful to take into account. They serve
as a knowledge base to further derive the features to be taken into account when selecting a ontology
visualization for a given case. We will not go into more detail, because this has already been a matter
for research. Instead, we aim to establish understanding of benefits and differences between different
techniques, which should facilitate the choice. In addition, we intend to focus on more medical-related
issues, to which this knowledge will form a knowledge base.
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Table 3.2 Summary of ontology visualization methods.

Visualization
technique

Description Advantages Disadvantages Examples

Indented List a list of entities,
where entities are
categorized as a tree
view

easy implementation and
representation; quick
browsing and effective
information retrieval;
systematic exploration of the
whole ontology; retraction
and expansion for focusing
on specific parts of the
hierarchy;

represents a tree (not a
graph); multiple inheritance
cases are not apparent; nodes
at the same level are not
immediately recognized as
siblings if subhierarchies are
expanded; not well suited for
the overall ontology
structure, determining the
depth of the hierarchy or
finding nodes that have many
children, deep hierarchies

Protégé
Entity
Browser

tree-like node
link

a taxonomy with
top–down or
left-to-right layout

effective for an overview of
the hierarchy for small trees;
various levels and features
(depth / width) are easily
distinguishable;

inefficient use of screen
space, leaving the root side
empty; a hundred nodes trees
often require multiple
screens or scrolling to be
fully displayed;

OWLViz,
Ontodia,
OntoGraf,
Onto
Studio

Zoom’able allows the user to
zoom-in to child
nodes to enlarge
them making them
the current level of
viewing

effective to find and locate to
specific node –
comprehensive view of the
hierarchy level where the
user is zoomed in; successful
for browsing to locate
specific nodes

do not offer an effective
overview of the hierarchical
structure; do not support the
user in forming a mental
image of the hierarchy;

Jamba laya

Space filling use the entire screen
space by allocating
the available space
for the node
between its children.

visualizing trees that have
property values at the
instance level; effectively if
the user cares mainly leaf
nodes and their properties
but does not need to focus on
the topology of the tree or
the topology is trivial

not effective for
structure-related tasks; not
effective if user is interested
in the topology of the tree of
the topology; not effective
for non-trivial topology;

Tree Maps

Focus + Context
and Distortion

distorts the view of
the graph to
combine context and
focus

effective in presentation and
displaying multiple nodes at
once; quick browsing; each
node can be moved to the
center of the tree to display
while retaining the context
of the focal nodes related

does not maintain a constant
positioning of nodes; does
not offer an intuitive
representation of the
structure of the hierarchy;

Touch
Graph

Thus, the conclusion implying from these findings (including Fu et al. [23]) is in line with Dudáš et
al. [16] and Florrence [32], who suggest that better results could be achieved if the tool supports more
than one visualization technique, allowing the user to switch between them. However, this creates a
lot of resource-consuming tasks for developers. In addition, given that many very intuitive and simple
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implementation features remain an issue for many visualization techniques, it is difficult to imagine that
such tools will become available in the coming years. As we have mentioned above, we understand and
further consider “visualization” as an opportunity to edit ontology in a graphical way. This choice seems
to be not only the most correct in general case, but even more correct in case of health(care)-related
domain, where such an opportunity is particularly relevant and beneficial for healthcare-domain experts
who may not have an in-depth IT-knowledge to build queries over the data schema in languages like
SPARQL. Although it is quite intuitive and even relatively similar to classical SQL, it brings significant
challenges for medical personnel, when more complicated queries need to be developed. It is also
in line with [16], according to which even though the user-friendly OWL syntax, such as Turtle or the
Manchester syntax, visualization is able to provide simpler ontology inspection and editing. The authors
pose graphical visualization as an important enabler in many practical tasks. However, although there
is a trend of domain-specific ontology that is highly adapted to a specific use in a given domain that
is becoming more granular, i.e., not only health(care)-related ontology, but also more specific, such as
biobank- or phenotype-related ontology, visualization tends to be more universal. In fact, there is both
the demand and the supply of a universal ontology visualization framework that implements a core set
of visual and interactive features that can be extended and customized to the use cases [16].

However, despite the universalism of most visualization frameworks, the current needs of the seman-
tic web community are not satisfied, i.e., there are no visualization frameworks that could be considered
as standard and recommended for their use. Therefore, the choice remains in the hands of users. This,
however, means that there should be provided guidelines for this choice so that the community can do
so based on their needs. Dudas et al. [16] explain this as follows: (1) there is no “one-size-fits-all” so-
lution, and various tasks and use-cases may require different methods of ontology visualization (also in
line with [19,47]); (2) there is a little improvement on the state of the art in a field, where new methods
and tools for ontology visualization are often developed from scratch, learning from the experience of
previous visualization methods.

Even more, visualization of an already existing ontology can make it easier to take a decision on
its reuse to annotate new data by inspecting the suitability of classes and properties of ontology and
whether they meet new needs [18]. This is particularly beneficial for the health(care) sector, where such
assessment can be carried out at both levels, at the level of one research group, different research groups
of one organization, and different institutions and exchange of their experience with relevant artifacts
and even different countries. As an example, different biobanks representing different countries could
do so to reach the highest possible level of data integration when using the same ontology, thereby
ensuring the consistency of the data acquired and used at all levels.

3.3 Requirement of evaluation
Typically, deployed semantic models are ready for use in large and complex systems. This leads to an
intuitive assumption that developers of the models concerned have accurately and cordially developed
each modeling language artifact of the semantic model, i.e., both elements, relationships, attributes, vi-
sual representations, and model types that form them. However, the practice demonstrates (also in line
with [15]) that in many cases the developer refers to formerly existing, similar artifacts and the integra-
tion of best practice, thereby trying to make the proposed solution as easy to use as possible, making
it similar to what the user is most likely to be dealing with. In the case of modeling languages, for
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instance, the typical choice is to refer to the UML and BPMN (Business Process Modeling Notation)
specifications. Although, on the one hand, it gives a lot of advantages and attracts public, it would be
logical to ask—whether the derivation of components from an external and differently oriented solution
has not negatively affected the features of the proposed solution and allowed the identification and pre-
sentation of all the necessary objects, giving them all intended features (which were not representative
to the existing ones). So, when the idea of the need for ontology comes to organization or institution, it
is crucial not only to determine and clearly understand all needs and expectations, as well as data and
all the relationships between them, but also the appropriateness of the identified candidate ontology.
The question to be asked is whether it is really appropriate in the sense of containing the classes and
properties needed to represent the data.

Ontology evaluation is one of the key phases in both ontology development and its further use and
reuse. The quality of ontology affects the accuracy of results provided to a user [49]. It is therefore
an emerging area with different approaches, taking into account various set of aspects or criteria (in
line with [1,48]). It involves both the adaptation of older approaches and introducing new ones. This
subsection forms an overview of them.

3.3.1 Taxonomy of the evaluation
While most studies focus on the ontology evaluation tools and their classification, we will provide
a very brief insight on them, and will focus on the less discussed but at the same time prospective
approaches, mainly referring to evaluation of ontology visualization. This should provide more added
value, since knowledge on this subject is very limited, but very crucial, especially for the (health)care
and (bio)medical sectors, which are less likely ready to try a number of approaches, if one of the
selected has failed to meet expectations.

3.3.1.1 Recommenders
This is even more the case in the light of the current development of (bio)medical- and (health)care-
related ontologies, which in addition to very specific ontologies and their detailed description, provides
recommenders as does BiOSS [70], content-based recommender proposed in [71], text mining-based
proposed in [72], the flexible biomedical ontology selection tool [73], and Bioportal (repository of
biomedical ontologies developed under National Center for Biomedical Ontology) considered to be the
most comprehensive biomedical ontology recommendation system [69,68]. Bioportal provides web-
based NCBO Ontology Recommender 2.0 (initially developed in 2010), which provides the user with
suggestions for the most relevant ontologies based on a biomedical text corpus or a list of keywords.
This suggestion is based on four criteria taken into account by recommender, namely: (1) coverage—the
extent to which the ontology covers the input data; (2) acceptance—the acceptance of the ontology in
the biomedical community; (3) detail—the level of detail of the ontology classes that cover the input
data; and (4) the specialization of the ontology to the domain of the input data. The developers of this
recommender emphasize that these criteria are the most relevant and widely-used criteria for ontology
recommendation, although the definition of these criteria may differ.

Another example is OntoKeeper—a web-based application that allows to assess the quality of the
ontology [52] based on semiotic measures devised by [50].

And the last but not least example that can be considered interesting and useful for the decision
making is called Ontology Visualization Tools Recommender. It can be used for both, finding the most
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appropriate ontology visualization tool for the specific use-case and ontology in use. This recommenda-
tion is based on four questions, which the user is expected to answer. The first relates to the assessment
of the OWL features and their significance for the given purpose, and the second—preference of on-
tology development environment with the opportunity of choosing between Protégé 3, Protégé 4, and
the NeOn Toolkit. The third question concerns the intended use, i.e., make screenshots, check domain
inconsistencies, structural inconsistencies, reuse ontology, adapt an existing ontology to a new use case,
develop a new ontology, analyze mapping on the ontology, and the last, but of course not least, the size
of ontology. Each question with its subquestions is assigned with weight (within the interval <-3;3>)
representing uncertainty of the importance of the respective attribute/feature.

3.3.1.2 Ontology evaluation tool
Another solution is the web tool for evaluating and ranking ontologies proposed by Jimborean et al.
[53]. The authors propose a solution that evaluates the quality of ontologies in two different dimen-
sions, namely structural and semantic. With the structural dimension, the authors mean metrics that
indicate how well ontologies were developed in terms of schema size, depth, width, density, richness,
and inheritance. The semantic dimension examines how instances were placed in ontology and the us-
age of the real-world knowledge representation. The idea under recommender systems is beneficial for
those with little knowledge on the topic in question, thereby greatly facilitating the choice by (semi)au-
tomatic assessment. However, in many cases this is not sufficient because the set of criteria may not
meet the needs of the user.

Therefore, this issue is less expressed for the domain under question, as is also pointed in [69], while
the selection of the visualization tool and evaluation of its applicability remains open. The choice should
be more justified, providing the most appropriate and correct option for the task. Even more, as we have
found previously, the practice and current reality shows that in some cases new task-specific solutions
are developed. Therefore, the further content should be valuable for them, pointing on the aspects to be
taken into account while developing a new visualization tool with its consequent evaluation.

The ontology evaluation tool is probably the most popular and broad category, which includes ad-
ditional subclassifications. Their overview has been provided in [51]. As regards ontology evaluation
tools, one of the most recent studies on this matter, [48] proposes a framework for evaluation of on-
tologies called OnE (Ontology Evaluation), which considers aspects such as accuracy, interrelatedness,
consistency, exhaustiveness, and reusability. It represents a set of criteria to be taken into account by
developers when developing an ontology. Another set of criteria was discussed by Mishra et al. [1].
It includes correctness or accuracy, adaptability, clarity, completeness or competency, computational
efficiency, conciseness, consistency or coherence, and organizational fitness. But perhaps one of the
most popular classifications is the one proposed by Burton-Jones et al. [50], which metric suite in-
cludes syntactic, semantic, pragmatic, and social quality, which are further supplied with attributes such
as (a) lawfulness—correctness of syntax, (b) richness—breadth of syntax used, (c) interpretability—
meaningfulness of terms, (d) consistency—consistency of meaning of terms, (e) clarity—average num-
ber of word senses, (f) comprehensiveness—number of classes and properties, (g) accuracy—accuracy
of information. It also formed the background for OntoKeeper that we have mentioned above.

3.3.1.3 Ontology visualization
Most visualizations focus on classes, their hierarchical relations, and properties. However, OWL has
more constructs, i.e., restrictions that determine which instances can belong to a class, relationships
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between classes expressing disjointness, or other constraints [16]. For this purpose, one of the most
obvious choices, particularly in view of the previous subsection on visualizations, is ontology visual-
ization. Ontology visualization tools use the OWL code of the ontology as input and typically display
it as a node-link visualization, where nodes represent classes and links represent properties—based on
domain/range definitions [19].

Although they are not intended to be focused on an evaluation, they are very beneficial in practice
since they allow easily detection of deficiencies. In addition, they are useful in cases when the existing
ontology is considered for reuse for annotating new data, when it should be checked that the ontology
contains classes and properties suitable for describing the data. Ontology visualization itself in some
available tools, such as LODSight, WebVOWL, IsaViz, BioOntoVis, OWLVix, FrOWL, OWLgrEd,
Welkin, LODSight, OWL Viz, KC-Viz, and WebVOWL, to support such a decision, is an option. We
also argue that they could be the most efficient when rule-based or logical approach is applied. Here,
the idea posed in Pak et al. [79] seems appropriate, i.e., to design anomalies. This means that a set of
rules is defined to check how the ontology behaves and whether any conflicts are identified such as
disjoint classes, missing or incorrect relationships, etc.

3.3.1.4 Briefly on other approaches
Another one widely-known approach is the model coverage assessment defined as the completeness
of ontology, more precisely availability of appropriate classes and properties that can be used to de-
scribe relationships and entities in a given data model. It typically allows model tests to be validated
by assessing how thoroughly the model objects are tested, i.e., by calculating the extent to which a
model test case performs simulation pathways through a model. In the case of ontology visualization,
the model coverage can be associated with a visualization test on the test data instances to find out
whether it covers all ontology concepts to find errors in the ontology (if any) as has been proposed in
[34]. However, the authors point out that the “appropriateness” here is very relative, where its precise
definition depends both on the use-case and on users’ understanding of the concept. For example, in
the case of medicine, a class Patient can be used as a type of an instance representing a Patient of a
Medical Institution, although a class like Entity would be “too distant” and inappropriate.

An approach derived from the model coverage assessment is ontology usage visualization (OUV),
proposed by Dudas et al. [18]. OUV is a visualization of a data set schema that supports merging
schemes into a single visualization, filtering the visualization to focus on selected ontology, and show-
ing all of the classes and properties in the data set, i.e., not only the most commonly used classes since
there is a need to see all “capabilities” of ontology. In other words, the aim of OUV, which partly stems
from its title, is to show how and whether ontology entities have already been used in existing data sets,
thereby ensuring that actual usage and needs are identified. This makes it possible to learn by example
and to define the requirements to be set for the particular situation by identifying cases not included in
the list of requirements (if any). According to Dudas et al. [18], it can be used to (1) clarify whether
ontology is suitable for modeling the given problem, (2) learn how to use ontology to annotate data,
and (3) detect errors in usage. It uses one or more RDF data sets as an input, while the output displays
all combinations of classes and properties that are used in data sets. More specifically, classes whose
instances are associated data set properties are displayed and linked with the properties in the ontology
usage graph/node-link visualization. The result is similar to ontology visualization covered above, but
it does not depend on domain/range relationships—it depends on the actual data of the data set only.
The visualization of data set schema refers to a single data set and aims to help users find out what
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the data set contains and how to query it. The authors believe it is suitable for evaluating the model
coverage, yet it can be used in addition to common ontology visualization and textual documentation.
It depends heavily on the use-case in which it is tested, on its complexity, number and comprehensive-
ness, i.e., whether it supposes all cases in which ontology will be used. In an experiment conducted by
the authors, it was done in an artificial environment and with very trivial examples, so very accurate and
comprehensive conclusions about the suitability of OUV to the task in consideration are not possible,
although the authors did some.

One of the very significant challenges encountered by the authors was the inability to find for suit-
able data sets with correct use of the ontology, which is an essential prerequisite for OUV. Another
point to be taken into account in the context of this book is that the authors found that OUV is more ap-
propriate in cases when ontology lacks a domain relationship. Therefore, in the case of the health(care)
domain, given that most tasks are very domain-specific, OUV is not appropriate. This approach will
therefore not be discussed in more detail.

3.3.1.5 Feature-based evaluation of ontology visualization tools
A way to evaluate the ontology visualization tool and method or to compare multiple tools is to refer to
some specific features. We refer to this category as a feature-based evaluation of ontology visualization
tools. This, in view of the nature of this task and above discussed (specificity of tasks posed in the
(bio)medical sector), could be one of the most appropriate, if the needs of the users are known. Let us
try to identify the main features to be taken into account.

One very specific example that aims to help in their determination is proposed by Schaaf et al.
[22]. It evaluates the performance, maintenance, usability, functions, and topicality of ontology visu-
alization tools. More precisely, the authors have developed an ontology of information management
at hospitals to support knowledge transfer. They have also faced problems with identification methods
that can support the visualization ontology and its use, as well as posed awareness that there will be
similar problems with bioinformatics. In order to bring added value for efficient data and information
management in the biomedical sector, they have carried out an analysis of eight tools for visualization
of large ontologies to assess their fitness in the medical informatics field. They have focused solely on
the assessment of tools capable of dealing with large ontologies, which are considered to be one of
the most important prerequisites for the (bio)medical sector, which deals with large and complex data
sets that come not only from different institutions but also from different devices. Unlike other studies
mainly concerning visualization and use, the authors share our awareness that the query of these large
ontologies is very important and needs to be addressed. Because only the knowledge representation
without their efficient use (for decision-making, reasoning, pattern retrieval, etc.) is useless, especially
in the medical sector, where querying of ontologies for nondomain experts is a challenge. However,
this challenge is addressed relatively rarely. It is thus beneficial for us to take a look on their findings in
this regard.

The authors believe the tool to be a performant, when ontology visualization and navigation can
be performed along with the querying without noticeable skips or dropped frames, which is a problem
for many visualization tools. With maintenance, the authors mean the support of both .csv and .owl
files import and export and ontology manipulation. Usability refers to general tool handling capacity,
documentation, plug-in management, while functionality refers to support of concept search, concept
property overview, subgraphs creation and querying, implementation of graph algorithms, including
“shortest path,” “concept neighborhood,” static views, hierarchy overview, and display filters. The last
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criteria they put forward are the topicality or up-to-date’ness of the tool, and its further development.
The authors have chosen a list of 20 visualization tools (their selection was based on [24]) for further
inspection, but only eight of them—Ontograf, OWLViz, GraphViz, IsaViz (all are Protégé plug-ins),
Tulip, Gephi, Cytoscape, Neo4j, were thoroughly assessed because most of the tools were not suit-
able for large ontology. More precisely, either their import was unsuccessful or the functionality was
not suited for their efficient management. Their analysis shows that Gephi, Tulip, and Cytoscape are
promising tools capable of visualizing large ontology, yet they still lack some important functions, such
as edge detection and filtering, that play an extremely important role in a given domain. However, they
stress that the extendibility and the possibility of using a number of plug-ins that could at least partially
resolve this. Thus, an important point to be taken into account when selecting the most appropriate tool
is to make sure that the features that are not implemented in the tool can be added by extending it.

Because meeting users’ requirements is a very complicated issue, Lohmann et al. [25] attempted
to propose a user-oriented ontology representation called VOWL 2, which is an improved version of
their previously proposed VOWL. VOWL 2 is based on a set of well-defined graphical primitives and
an abstract color scheme. Reference to a color scheme seems to be taken into account rarely, although
it is effective as a communication tool, thereby supporting the main objective of visualization. It was
developed to be easily understood by typical users with only a little training, by following Visual Infor-
mation Seeking Mantra of “overview first, zoom and filter, then details-on-demand” [28] thereby giving
users with an overview of the complete ontology first, and then allowing them to subsequently explore
parts of it in deep. This is not the most typical choice, since many tools choose the opposite path—
start with the root and then allow the graph to be expanded. The benefits of this study rely also in the
“think-aloud” method that they use, while testing their tool and comparing it to two more (SOVA and
GrOWL). This allows to gain insight on typical (the authors call them “casual”) users’ experience and
expectations, i.e., what does the usual/typical user expect from the “good” ontology visualization tool?
Their study has revealed that visualization tools allow users to process different tasks even if they have
not previously dealt with ontology. More specifically, 84% of the tasks were successfully completed,
with 33% of participants who have gave up while completing them in GrOWL. The negative result,
shown by GrOWL, is due to the fact that participants were not able to find elements under question due
to a lack of a feature to search for a specific element, i.e., participants were forced to process the graph
by visually scanning.

The authors therefore defined a set of six criteria for evaluating visualization tools. It includes
clarity—perceived visualization clarity, learnability—perceived ease of learning how to use the vi-
sualization, findability—ease of finding specific elements, mappings—perceived understanding and
comprehensibility of the mapping between elements of ontology and visualization, colors—helpfulness
of colors for comprehension of the visualization, shapes–helpfulness of shapes for understanding of the
visualization. Users acknowledged that clarity was the most challenging for all visualization tools under
question. Participants have appreciated the presence of zooming and the search opportunity to quickly
find an element by its name. They also found it helpful to make a clear visual distinction of ontology
elements when they are distinguished by means of different shapes and sizes compared. And also the
high level of details is sometimes very useful; it was stressed that this results in too many tangles and
edges, especially those crossing each other. The authors found out that explicit labeling of all elements
has a positive effect to make visualization more self-explanatory, but it may cause distraction, so it
would be advisable to give users the choice of whether such labels are displayed. Since testing was
conducted using ontology of a relatively moderate size, i.e., no more than 53 classes, the authors have
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expressed awareness that graph visualization would not be suitable, i.e., the overview of larger ontology
could be lost and the graph would no longer be usable anymore. Thus, other graphical techniques could
be more appropriate, which means that switching between different graphical methods would be very
important (also in line with [19]). However, other studies suggest that there are additional mechanisms
that contribute to the interaction and readability of graphs modeled for large ontology.

Dudas et al. [16] define a set of criteria, including the implementation of visualization methods, the
support of interaction techniques, the OWL constructs visualized that they call OWL coverage, i.e., a
list of 15 OWL constructs, retinal properties such as color, shape, size, saturation, and texture. This list
is applied to 37 ontology visualization tools using an expert examination, i.e., users are not involved.
Out of the 37 selected tools, the authors found that only 17 works, including those, which are only partly
usable and very limited in terms of functionality. The authors have defined and evaluated a very broad
range of interaction techniques—radar view, graphical zoom, entity focus, history, pop-up window,
incremental exploration, search and highlight, filter parts, filter entity types, fish eye distortion, edge
bundling, 3D navigation, panning, drag and drop, clustering, textual editing, and visual editing. The
most popular interaction techniques implemented by the most concerned tools were graphical zoom,
search and highlight, filter entity types, panning, drag and drop. The most exotic techniques, however,
are: 3D navigation (OntoSELF and OntoSphere), clustering or representing in a dendrogram plot (KC-
Viz and OntoTrix), edge bundling (Knoocks, OntoTrix, and OWLGrEd), visual editing (CmapTools
OntologyEditor, GrOWL, OntoTrack, OWLGrEd, Triple20), fish eye distortion (Jambalaya, OntoRama,
Multiview ontology visualization, Ontoviewer, TGViz), history (KC-Viz, Ontodia, Ontology visualizer,
OntoStudio, OWLGrEd, Triple20).

For retinal properties, typically understood as a simple but a sufficiently efficient feature of sup-
porting and facilitating interaction between model and its user, the most popular is a color property,
followed by shape. However, properties such as size (4), texture (2), and saturation (1) are used by
only several tools. In their study, the most feature-rich tools were KC-Viz, Jambalaya, and Ontodia.
Dudáš et al. [16] have concluded that many tools do not provide all well-known and sometimes easy-
to-implement features. This is because most of them have been developed as experimental prototypes
for research projects—there is not enough time and other resources to implement extensive coverage.
We share this conclusion and this is what we have faced when we examined some of these solutions,
i.e., some of them have not been found because they are no longer supported.

Surprisingly, but the most frequently and widespread problem is performance. More precisely, just 5
of 37 tools (Ontodia, OntoGraf, Entity Browser, TGVizand TopBraid) were able to load a large ontology
without unreasonable delay. This finding is also consistent with other studies, such as [22].

Summary of the results from the study led the authors to conclude that the choice of the most
suitable and appropriate tool can be a challenge because even if the tool can be characterized by a high
performance and rich list of features implemented, as is for Ontodia, OntoGraf, and TopBraid, they
may be still use-case specific. As an example, Ontodia although meeting above criteria, displays only
part of the ontology manually selected by the user. Thus, the choice of the most appropriate tool should
be a task-specific choice, which should assess both the functionality and features of the tool, but most
importantly, the requirements posed to it by a specific use-case should be acknowledged. We therefore
make a stronger focus on points that should be taken into account when the choice should be made
without a repetition or conducting a new comparative study on existing tools, which usefulness can be
very limited, particularly in the use-case of domain-specific-medical semantic models.
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FIGURE 3.3

Ontology evaluation taxonomy.

3.3.1.6 Taxonomy of evaluation techniques
As a summary of this section, we propose a taxonomy of evaluation techniques (Fig. 3.3) that we ob-
tained from the literature review of the evaluation techniques and approaches. It allows us to distinguish
six primary evaluation categories: (1) model coverage, (2) ontology evaluation tools, (3) ontology visu-
alization tools, (4) ontology recommender, (5) ontology usage visualization, (6) ontology visualization
tools recommender, and (7) functionality and feature inspection for both ontology or semantic model
and visualization evaluation. In addition, they can be classified in accordance with the stakeholder in-
volved, i.e., technical evaluations that suppose the involvement of the developer, IT-expert etc., users’
evaluation or autonomous, where the evaluation is carried out in a background, although it is closely
linked with the technical evaluation since both refers mainly to the technical side, while the users’
evaluation supposes the overall acceptability level of the method/tool under question.

3.3.2 How to make a choice of a visualization tool
Based on the knowledge we have gained from the literature and those we have from our own experience,
we define the list of features that are critical or at least very important to make a choice of the tool.
This list consists of (1) feature found to be important, (2) area to which it is applicable, (3) its brief
description, (4) level of importance, where we distinguish (4a) critical, (4b) high, (4c) task-dependent,
and (5) list of literature supporting our opinion (Table 3.3). To sum up, most important points to be
considered are related to (1) performance to allow the user working with it, (2) extendability to allow
to adapt the tool to the needs if the feature of interest has not been implemented, (3) interaction to
allow the user to use it as a communication tool, thereby facilitating daily activities. For the later point,
the consensus between an attempt to provide a comprehensive overview, and sufficiently appropriate
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Table 3.3 Features to consider for ontology visualization.

Feature Area Definition Importance Ref.
Performance Tool allows to load a large ontology

without unreasonable delay
Critical [27,19,22,16]

Expandability Tool allows to extend the tool with the
features that are not implemented in
it

High/critical [77,22]

Multiple visualization
techniques

Tool allows the representation in different
models

High/critical [78,19,32,16,23]

Search Visualization allows to search for a specific
elements by its name

High [28], [16], [25],
[29]

Overview Visualization allows to gain an overview of the
entire collection

High [19], [47], [16],
[27], [28]

Zooming and Panning Visualization allows to zoom in and out items of
interest, while retaining global
context

High [47], [19], [29],
[32], [28], [16],
[27]

Semantic Zooming Visualization allows to control the level hierarchy
in the visualization by zooming

Task-dependant [16], [27], [19],
[78], [47]

Concept clustering Visualization the selection and aggregation of key
or the most relevant concepts of
ontology and the limitation of
visualization

High [16], [76], [75]

Filter Visualization filters out uninteresting items to
avoid or at least minimize clutter

Task-dependent/
high

[47], [29], [19]

Details on demand Visualization allows to select an item or group and
get details when needed

Task-dependent/
high

[47], [19], [28],
[16]

History Visualization allows to keep a history of actions to
support undo, replay, and progressive
refinement

Task-dependent/
high

[19], [16], [62]

Colors Visualization allows the user to distinguish
between ontology elements

High [25], [16]

Shapes Visualization allows the user to distinguish
between ontology elements

Task-dependent/
high

[25], [16], [65]

Natural language Tool allows the user to translate and
visualize the ontology in the user’s
language

High [32]

distinguishing of different elements and ability to navigate between them and search for element or area
of interest should be reached.

In addition, as we have discussed above, depending on the task and user intents, additional require-
ments can be posed as potentially facilitating interaction and use of the ontology and its visualization.
This includes features such as brushing, magic lens, symbols (in addition or instead of color and shapes
for different elements of ontology), saturation and texture, 3D navigation, etc. From popular features,
labeling has not been deliberately mentioned here, although in most cases it has a positive effect on
visualization making it more self-explanatory, but it may also cause distraction. Therefore, for this as
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well as for many other features that are not considered to be “must have,” it would be advisable to give
users the opportunity to choose whether and when the feature under question is used, i.e., dynamic
interaction with the tool features should be ensured. Otherwise, extendability becomes “must have.”

3.4 Discussion
Health(care) ontology and their terminologies play a key role in the representation of knowledge and
integration of health data. In healthcare systems, the Internet of Technologies (IoT) or more precisely
Internet of Medical Things (IoMT), provides a data exchange between different entities and ontologies
that provide a formal description to present the knowledge of healthcare domains. It is recommended
that these ontologies ensure the quality of their adoption and applicability in the real world. However,
despite the popularity of medical sector-related ontologies and diverse supporting tools, it is still not
clear how do the system holders, who worked with relational databases over the decades should migrate
to the ontologies and semantic models. And even in case of a positive answer, although there is a wide
variety of different approaches and domain-specific ontologies and their visualizations, the issue of
more efficient management of all data in (bio)medical organization remains open.

This is even more the case when the question on what is understood as (bio)medical data is asked,
i.e., whether these are only data collected in and exchanged between medical organizations or they
include scientific literature published on these concerns. As a result, there are may ad hoc approaches
to this issue. One such attempt was Sarkans [39] focusing on more efficient and sustainable scientific
report-related data management through the BioStudies public database that organizes data from bi-
ological studies. Another more recent attempt is PharmSci [36], which is an ontology for modeling
pharmaceutical research data aimed at making it easier to access, reuse, curate, and integrate data from
documented research toward providing services, thereby unveiling hidden knowledge. What makes this
solution different compared to others is that it mainly refers to scientific outputs already produced by
medics and their effective reuse—it combines scholarly metadata with domain-specific metadata. Both
of these studies emphasize the significance of scientific outputs, their easier access and further reuse,
which opinion we share. This question has not been discussed in this chapter, but could be seen as one
of prospective directions to be explored in the future.

Another point to be taken into account is posed by [54] and [55], according to which, given that
healthcare is a national competence that is covered to national law, it is often challenging to export
health data from one country outside regional or national jurisdictions. They therefore stress that the
transformation of the (European) field of life science and health data will only be possible only by coor-
dinating national and international initiatives, connecting developments between projects and countries
in long-term standards-based infrastructure operating on a continental scale, and by providing a pro-
cedural framework that will guarantee the rights of patients’ while ensuring controlled access to data
across borders. So, apart of the intuitive questions asked and answered in this section, there is still a
long list of open questions, including general ones related to legal issues that should also be taken into
account when dealing with the data.
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3.5 Conclusion
The aim of ontology is to achieve a common and shared knowledge that can be transmitted between
people and application systems [74]. Thus, ontology plays an important role in ensuring interoperability
between organizations and on a semantic web, as they aim to acquire knowledge of areas, and are tasked
with creating semantics explicitly in a generic way, providing a basis for reaching an agreement in an
area. Thus, ontology has become a popular research topic in many communities, including the medical
sector. Semantic models provide crucial machine-interpretable information to the knowledge discovery
process [36].

In this section, we have provided an overview of both the concept of ontology visualization and on-
tology visualization evaluation, as well as have transformed this knowledge in a taxonomy that seems to
be lacking and, therefore, misunderstanding about the concept has been observed in both practice and
literature. This allowed us to point on the solutions that are not appropriate for medical and (health)care
sectors, as well as identify areas that although are challenging for most other areas, are almost resolved
in this particular domain. The proposed taxonomies provide an overview of the diversity of tools and ap-
proaches, their objectives and, consequently, requirements posed to them, where there is still no “silver
bullet” and “one-fits-all,” although there are many prospective solutions for a wide range of purposes
and users, starting with those with very limited knowledge, where recommenders are provided for the
selection of both ontology and ontology visualization. They provide users with suggestions that most
likely will meet their needs, and continue with those suitable for both advanced and experienced users
or even developers. We found that the evaluation of ontology in the medical sector was almost resolved,
where a continuously growing number of very specific medical ontologies forced the development and
continuous improvement of ontology selection supporting tools. However, the same question posed to a
visualization technique or tool remains open, where the correctness of choice depends to a large extent
on the specific nature of task. This leads to cases when organizations and research teams are forced
to use either a set of tools, or to develop their own visualization tools, or to pass and refuse the task.
The list of requirements posed for the tool depends on the subdomain and may vary from one task
to another, even in scope of one domain. This list should therefore be determined on the basis of the
requirements imposed from the task.

In this section, we have provided a list of different types of features that could facilitate the choice
of a visualization tool by determining a list of the key features required for the task. This should allow
researchers to define a whole-grained set of requirements for visualization technique or a tool that is
less likely to change afterwards. At the same time, it could be beneficial for developers that aim to
develop more universal tools.
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4.1 Introduction
As a government policy, the healthcare of citizens of any country must be a priority. Thousands of
initiatives have been taken worldwide to solve problems and optimize patient care by physicians, nurses,
hospitals, and clinics. In this sense, one of the great allies for the advances obtained so far was the
constant advancement of information technology.

Several information systems for healthcare were developed and implemented in different parts of
the world, giving rise to different solutions, and consequently, different standards such as business
rules, data models, protocols, and several other aspects inherent to the software development process.
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One of the results of this computerization process was the implementation of Electronic Health Records
(EHRs). According to Gunter and Terry [1], EHR is a systematized collection of patient health, clinical,
and demographic information stored in digital format and shared in different environments, such as
information systems in hospitals, health plans, clinics, physicians, etc.

Even with the advances already obtained in developing and implementing standards in managing
and using health and medical information, the interoperability between the most different types of
actors and systems involved with EHR remains one of the biggest and existing challenges. In addition
to managing data concerned to healthcare such as medical appointments and drug prescriptions, the
possibility of including various other types of information obtained in the treatment of patients, such as
imaging exams and videos, for example, increases the complexity of systems.

Semantic interoperability has been used as a critical solution to enable data-centricity. According to
Veltman [2], semantic interoperability is “the ability of information systems to exchange information
based on shared, preestablished, and negotiated meanings of terms and expressions.” In EHR software,
an archetype model is an approach that enables semantic interoperability, decreasing software mainte-
nance needs since all knowledge will reside in software-independent archetypes, and changes can be
made independent of software or databases [3].

Data integration between different clinical health records is still difficult to resolve but essential for
the efficient use of EHR for personalized and quality patient care. Different information systems used
by the various healthcare providers must be able to interoperate [4] and, in this sense, one system must
understand the context and meaning of the information provided by another system [3]. This contextual
and semantic synergy is possible through the use of essential but challenging semantic interoperability.

Remote health monitoring activities are gaining momentum with the advent of the Internet of Things
(IoT), one of healthcare’s most popular technological trends [5]. Each industrial segment has specific
demands, and the application of IoT-based technologies needs to be adapted to meet the specific re-
quirements of each one [6]. In the healthcare domain, the application of IoT technology is considered
with a specific definition. The use of remote monitoring devices to analyze vital signs and other mea-
sures relating to the patient’s environment allows continuous observation and monitoring [7].

Visioning the future of the fully automated industry, IoT is one important technology that is boost-
ing great advances, as in Industry 4.0 [8]. Regarding the e-Health industry, Manogaran et al. [9] defined
the term Internet of Medical Things (IoMT) (also known as healthcare IoT). With this kind of infras-
tructure, it is possible to check, directly over the internet, signals such as temperature, ECG, EEG,
blood pressure, blood oxygenation, among others. Consequently, the idea of patient-centered service
provision becomes more plausible, allowing for greater precision and increased quality of life for pa-
tients.

According to Jabbar et al. [10], issues like standards, scalability, devices heterogeneity, scalability,
standards in addition to many others are still open challenges and topics of recent research. In line with
EHR systems, interoperability is a key issue to allow effective communication and knowledge sharing
between the most remote monitoring devices and other systems employed in industries. Also, in line
with the interoperability solution strategies from e-Health systems, Ganzha et al. [11] state that devices
interoperability, like IoT-based, can be solved if semantically interoperable.

The solution space for the interoperability problem in the focus areas of this text is directly associ-
ated with adopting semantic technologies. Recent work has demonstrated this trend, promising results
[12–18]. Nevertheless, some concerns must be taken into account so that it is possible to realize the
expected benefit not only for patients but also for other users of all the systems. To make the most of
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the environment made up of different connected objects and healthcare system software to achieve full
interoperability, it is necessary to think of semantic models that consider both remote health monitoring
devices (IoT) and the e-Health systems.

An increasing number of IoT ontologies were proposed in the literature to overcome the interop-
erability issue between connected devices in the most different kinds of industries. Among the most
commonly discussed, the W3C Semantic Sensor Network (SSN/SOSA) and the ETSI SAREF are the
most promising [7,19,20], which in turn could be aligned [21].

On the other hand, there are some standards in e-Health systems as the openEHR information model,
defined by the openEHR Foundation as “a set of models, software, and open specifications used to
create standards and build information and interoperability solutions for healthcare” [22,23]. HL7 is
another attempt from the health community, defined by the Health Level Seven International (HL7) or-
ganization as “a framework and standards for exchanging, integrating, sharing, and retrieving e-Health
information. Features like package format, peer communication, structure, and data types are some ex-
amples of standards defined for integration systems” [24]. There is not yet a consensus in standards
specification to e-Health systems. Nevertheless, openEHR is one of the most widely used standards
and significantly influences developing other international standards like HL7 itself, CEN (European
Committee for Standardization), and ISO [3].

To align these standards and technologies, one must still consider another important aspect of these
ecosystems, like communication protocols, security and privacy concerns, cloud services, APIs, and
data analysis capability. Combining these technologies demands a huge effort and requires the effective
participation of industry, academia, standardization bodies, and government.

Despite the great advances, there is much to be done. In the figure below (Fig. 4.1), it is possible to
depict a general landscape view of the context in question. Without sticking to the details, one can state
that a semantic layer will be a key component of any proposed architecture. Semantic annotations and
ontologies will be essential tools to overcome the interoperability issues.

To better illustrate the problem, we will consider a case study where a patient with chronic heart
disease has some of his vital signs, like blood pressure, body temperature, electrocardiograms (ECG),
and oxygen saturation, constantly monitored. In addition, sensors and devices collect environmental
parameters that directly influence the patient health conditions. He also has a health record stored in the
EHR system of his city.

First, the ideal situation would be to consider that all data could be shared between all EHR systems
in his state and country. Under this panorama, we have to regard the interoperability between different
standards adopted between the various systems. Each standard adopts different attributes and relation-
ships regarding data. Each of the systems must understand what the other does. This understanding is
precisely what semantic interoperability offers, a set of technologies that will allow systems to share
the meaning of data through previously defined models.

The next sections will present an overview of the role of sensor devices and semantic technologies in
the e-Health domain through descriptions of technologies and patterns, existing works, current trends,
and future insights. Although not exhaustive, this chapter aims to present and consolidate the main ideas
developed or under development to seek maximum quality in the health services offered to society.
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FIGURE 4.1

HealthCare system landscape under semantic interoperability perspective.

4.2 The EHR ecosystem
Hovenga and Garde [25] present a set of functions that can benefit from information extracted and man-
aged by e-Health systems. This set includes decision support, managed care, resource management,
public health, health policy analysis, and more. Beyond the common sense of electronic transactions
employment, these systems were designed to extrapolate the doctor-patient relationship from both doc-
tors and their patients, making way for new opportunities to create better medical services, health
policies improvement, control and transparency increase, worldwide system integration.

Clinical data registry, also known as the clinical registry, is the atomic element of information for e-
Heath systems, and it has been widely used around the world. The National Institutes of Health describe
a registry as “a collection of personal information, usually focused on a specific diagnosis or condition”
[26]. National Center for Biotechnology Information (NCBI) defines clinical registry as “a real-world
view of clinical practice, patient outcomes, safety, and comparative effectiveness [27].”

In turn, International Organization for Standardization (ISO) [28] defines the “Integrated Care Elec-
tronic Health Record” (EHR) as “a data set with information about the specific healthcare in computer
processable form” and, it has a commonly agreed logical information model that specifies the structures
and relationships between information but is independent of any particular technology or implementa-
tion environment.”
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Claiming frustration with promised IT automation to the health systems and processes and the lack
of support for continuity of care, healthcare professionals and stakeholders supported the openEHR
community, which proposed the openEHR specification aiming to improve the quality of technology in
medicine, consequently improving patient care and the quality of the entire health system.

Some healthcare standards were proposed to provide interoperability between different healthcare
systems and for different purposes. These standards relate to both syntactic and semantic interoperabil-
ity, defining the meaning of the communication. The most widely used patterns are Health Level Seven
(HL7) International like HL7, HL7 v2, and HL7 v3 [24], which are related to message interchange;
Systematised Nomenclature of Medicine – Clinical Terminology (SNOMED-CT [29]), which are re-
lated to terminologies and openEHR [22] and HL7 Clinical Document Architecture-CDA, which are
related to clinical information and patients records [30].

Interoperability with EHR systems is still a problem to be solved and many opportunities and chal-
lenges to overcome. Adel et al. [31] list some examples of limitations that persist, among these:

• the need for information adaptation to the standards;
• complex understanding, and consequently, the complex implementation of some standards;
• adaptability to future uses;
• some standards, such as HL7, do not have full support to semantic interoperability;
• some standards can be ambiguous due to inaccurate information, causing interpretation problems by

physicians;
• the great number of EHR standards and systems would not contribute to the seamless exchanging of

clinical data.

In the subsections below, we give an overview of some EHR technologies that support most modern
systems.

4.2.1 OpenEHR
According to openEHR Foundation [22] openEHR is a set of open specifications, templates, and soft-
ware used to create standards and build healthcare information and interoperability solutions for the
healthcare area.

Different worldwide projects influenced the openEHR architecture, leading to a model-driven ap-
proach with a multilevel modeling framework separating data representation from domain content.
According to [22], this multilevel approach provides three levels of models [23].

Reference model (RM): the first level of modeling is a stable reference information model and the
only implemented in software. The reference model only involves concepts relating to the administra-
tive and services context. Reusable content element definitions: archetypes as artefacts with definitions
of clinical information. The different kinds of care events and subjects of care are defined in archetypes
and templates; formal definitions for data created from a set of elements obtained from archetypes in
openEHR models. These data are used for forms, documents, messages, etc.

Archetypes and templates are “well-defined semantic gateway to terminologies, classifications and
computerized clinical guidelines” [23]. A data schema, usually based on an archetype model that con-
siders data types definition from RM, is used to define the structure of the data persistence model in
EHR systems [7].
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FIGURE 4.2

openEHR Archetype architecture overview.

Domains experts can create or modify archetypes and templates, maintaining compatibility to the
information system. Terms within an archetype can have relationships with external terminologies like
SNOMED-CT. Archetypes are constrained by RM and Archetype Definition Language (ADL), specifi-
cally by the archetype type, data structure, and data type defined in RM. One can consider there are three
elements in an ontological way in the openEHR environment: the reference model, the archetypes, and
terminology, both internal and external. However, various archetypes may be developed for the same
clinical concept, hindering semantic interoperability [17] (Fig. 4.2).

4.2.2 Health level seven international (HL7)
HL7 provided a set of standards and a framework for exchanging, integrating, sharing, and retrieving
EHR data, defining the process of information packaging and communication, and setting essential
elements for integration between systems as language, structure, and data types required [24]. In order
to improve existing standards, HL7 FHIR [32] was created to facilitate the exchange of healthcare
information between organizations. This new framework is composed of a content model in the form of
resources and a specification for real-time resource sharing through RESTful interfaces and messaging,
and documents.

According to Peng and Goswami [33], the FHIR working group is also working on the FHIR linked
data module, which is based on semantic web technologies. Standards such as Resource Description
Framework (RDF) and Web Ontology Language (OWL) are some of the resources used.
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4.2.3 ISO 13606
“The ISO/EN 13606 standard specifies the communication part or all of the EHR of one or more
identified subjects of care between EHR systems, or between EHR systems and a centralized EHR data
repository” [34].

It was developed by CEN/TC251, a European technical committee responsible for setting standards
in Health Information and Communications Technology. The standard provides a model for represent-
ing the information that can be included in an EHR and how EHRs can exchange data between them.
However, it does not define the architecture details and data storage. ISO/EN 13606 is based on a refer-
ence model and an Archetype Object Model (AOM), where knowledge is represented by the concepts
of the clinical domain by means of archetypes [35].

4.2.4 Semantic models in healthcare
Although all the efforts, there is no standard de facto to overcome the interoperability problem con-
cerned to EHR systems. We have not yet a solution, but standards are maturing independently. An
ideal semantic model should minimally “understand” the different standard health formats like HL7,
OpenEHR, ISO 13606, and others.

The semantic model is a high-level conceptual data model description and structuring formalism
that includes semantic information, permitting the interpretation of the meaning from the instances. Se-
mantic web technologies are used for annotating and sharing data using web protocols. Data integration
and reuse in a machine-readable format is a crucial aspect when we use these tools. The Semantic Web
Stack, standardized by W3C [36], among several other elements, defines the Ontology Web Language
(OWL), a specification of an ontology language based on a description logic, RDF (Resource Descrip-
tion Framework), a specification that describes resources in the form of triples, and SPARQL, a query
language based on triple patterns modeled with RDF.

Ontology as a data model can formally represent concepts from a specific domain and their rela-
tionships. Thus, humans and machines may understand the meaning of the exchanged data. This is the
essence of interoperability, and nothing is more natural than applying ontologies to resolve interoper-
ability issues in EHR systems. Because of this, most recent works are supported by the use of semantic
web technologies.

Approaches like in Boscá et al. [37] propose to use archetype methodology to perform data trans-
formation between FHIR and other specifications such as HL7 CDA, EN ISO 13606, and openEHR.
Nevertheless, there are some drawbacks, like separating the narrative definition and the formal defini-
tion of FHIR resources when dealing with FHIR archetypes.

Papež et al. [38] states the urgent need to develop and evaluate a machine-readable standard to
facilitate the systematic creation, sharing and reuse of EHR derived phenotyping algorithms. They pro-
posed the use of OWL and RDF for enabling computable representations of EHR-driven phenotyping
algorithms.

Another approach proposed to integrate EHRs from heterogeneous resources [39]. They build se-
mantic data virtualization layers on top of data sources and then use SPARQL templates and a reasoner
to complete the transformation to a source-independent RDF model based on a canonical ontology.
According to them, the canonical ontology model enables to export into formats accepted by various
other systems.
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In [40], the authors proposed an open-source tool based on a two-step approach to perform RDF
data transformation by applying semantically rich models to data sets. The goal is to standardize concise
RDF data sets, originally transformed from relational sources or even other schemas, with a semanti-
cally rich model that is schema-independent. An important aspect of the tool is the definition of a set of
constraints (target model) on the application ontologies.

In their first work, Adel et al. [31] considered different formats as ADL (Archetype Definition Lan-
guage) archetype from OpenEHR, relational databases, spreadsheets (CSV, . . . ), and XML documents.
This proposal was also based on a two-step approach where in the first step, they convert each input
source to an OWL ontology. After that, they integrated all the ontologies into a canonical ontology. In
[41], they proposed a framework containing an expanded version of the canonical ontology into a fuzzy
ontology aiming to better deal with uncertainty.

Regarding our cardiac patient in the case study, it is known that he is an executive who has a hectic
life and who frequently travels all over the world to solve his company’s business. With his lifestyle and
health condition, it would be expected that he would need medical attention sometimes. EHR semantic
models could then offer full conditions to access patient records, last clinical attendances, exams, and
other relevant information to any health system participant of any country.

Suppose a local physician needs to prescribe medication to the cardiac patient during his travels.
In that case, he will not do so without first knowing all the patient’s condition and history and the
physician accompanying the patient also knowing about this. The EHR systems available to physicians
will access all the information previously modeled by ontologies and stored in the cloud.

What about if this patient would need to have his vital signs monitored during his travel? What
if the physician who accompanies the patient in his city would need to follow up of his ECG and
environmental conditions during his travel?

In the next section, we will discuss the technical features of connected objects, some standards and
the importance of also applying semantic interoperability in this context.

4.3 Connected objects in healthcare
Healthcare has always been a concern of any citizen, but even so, health problems have never ceased to
impact people’s lives. However, the lifestyle of modern society has increasingly influenced the neglect
of signs that generally indicate that something is wrong. With the advancement of electronic technology
and especially with the advent of pervasive computing, or ubiquitous computing, thousands of possibil-
ities emerged to allow some limitations when monitoring a person’s clinical conditions and vital signs
to cease to exist.

With the daily advancement of wireless access device technology and electronic gadgets for per-
sonal use, many applications and functionalities are created and made available to consumers. This
scenario is no different in applications for monitoring vital signs and other information concerned to
health and environmental conditions present in smartphones, smartwatches, and wearable devices.

The development of standards that allow the articulation between remote monitoring objects and
EHR systems by academia and industry has contributed a lot to the evolution of this ecosystem.
However, along with this evolution, an environment of heterogeneous technologies and systems has
emerged. This problem increases even more when comparing initiatives from different countries and
continents.
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Nevertheless, the path taken to solve this problem through semantic interoperability is the most
promising. A large part of the related problems lies in the definition and proper treatment of data
models, i.e., how the data will be extracted, transmitted, and manipulated. Next, some of the main
semantic interoperability technologies and standards that have been addressed in the most recent works
are briefly discussed.

Before discussing semantic models with connected objects, we will present an overview of some
technologies and standards that support communication between different monitoring devices currently
used in healthcare.

4.3.1 Internet of things
With the advent of IoT technologies, the pervasive e-Health market could be further boosted. Several
applications could be planned and developed to monitor real-time information from different patients,
greatly helping people with more severe comorbidities and the elderly, which require greater and con-
tinuous attention. Consequently, there could be reductions in hospitalizations, a cost decrease for all
stakeholders, including own patients, and mainly the quality of life improvement.

An important aspect of being considered is the integration of IoT technologies with existing EHR
systems, which, at first, may seem simply advantageous but is a necessity. The combination of infor-
mation from EHR systems, with patients records from hospitals, clinics, pharmacies, caregivers, etc.,
and data gathered from remote devices with environmental and personal data obtained all the time, can
improve the healthcare system with higher fidelity information. Recording this information opens the
opportunity for a series of treatments that can be applied to the data, such as the search for patterns and
the increasingly precise refinement to support decision-making. Technologies and solutions based on
big data management and data analytics (machine learning, data mining) can be clearly adopted to deal
with the huge amount of data.

From a scenario with different manufacturers, different standardization bodies, thousands of cus-
tomized solutions, demands, and particular needs on the part of stakeholders, both EHR systems and
IoT-based systems suffer from the same problem, interoperability. The most commonly adopted strat-
egy has been the approach through the use of semantic technologies.

Furthermore, in the specific case of IoT, there are some other challenges in terms of complexity
because of the nature of technology, which includes solutions to low-level aspects like the device itself,
networking, middleware, application services, and data models. Each one of these levels must be con-
sidered when looking for an integrated solution. In this sense, several existing and emerging ontologies
were designed for this domain. For instance, standardized solutions as W3C SSN (Semantic Sensor
Network) ontology [42], SensorML (Sensor Model Language Encoding Standard) [43], IoT-Lite [44],
IoT-A information model and IoT.est ontologies [45].

4.3.2 Semantic sensor network
According to Alamri [46], SSN has been one of the most widely adopted standards to describe sensors
and IoT-based devices, describing the notions of sensor and physical devices, actuators, observations,
and other concepts. With the exception of the SensorML, the rest of the standards above are in some
way based on SSN. SensorML provides a framework to define sensors and sensor systems and the
measurement processes, with descriptions of geometric, dynamic, and observational characteristics.
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THE W3C SSN Incubator group states that “SSN uses high-level specifications to allow the efficient
management, organization, understanding, and querying of data resultant from the network and its
sensors. Ontologies can be a great tool to describe sensors, allowing classification and reasoning on the
capabilities and measurements of sensors. They can also track the provenance of measurements and
allow reasoning about individual sensors and the connection of several sensors as a macro instrument.”

From a movement on rethinking SSN, Janowicz et al. [47] proposed SOSA (Sensor, Observation,
Sample, and Actuator) ontology, one of the most general frameworks of semantic sensor models, pro-
vides representation for the elements, like relations and entities, involved in sensing, sampling, and
actuation.

In a comprehensive survey of semantic sensor technologies in IoT [13], Honti and Abonyi provide
an exciting overview and guidelines for any stage of semantic-based projects development. Calvillo-
Arbizu [48] published another survey that analyzes the data life cycle;: trust, security, and privacy,
and human-related issues. In this article, the authors reviewed the literature and concluded that most
existing approaches that consider IoT application in healthcare do not regard the specific requirements
of this domain.

4.3.3 M2M
ETSI (European Telecommunications Standard Institute) is one of the leading partners of oneM2M
[49] global standards initiative. It involves some specifications and requirements, architecture, APIs,
security solutions, and interoperability.

Lucic et al. [50] discussed the standardization of M2M as the direct communication between devices
through a mobile or fixed network. The Machine-to-Machine (M2M) principle allows communication
between two or more entities without direct human intervention, thus automating communication pro-
cesses. As with IoT technology, M2M can be used by a wide range of ubiquitous applications, like
e-Health.

A fundamental difference between M2M and IoT is the latter’s dependence on IP-based networks so
that monitored data can be sent from devices, usually on a cloud platform. In the case of M2M, devices
are generally embedded in equipment and communicate through Wi-Fi networks, cellular networks,
and can communicate with other objects by using peer-to-peer architecture. The underlying network
structure must be transparent to the M2M system, including any network addressing mechanism [51].

To bridge the gap between M2M and health standards, the manager and the server entities do this
role with openEHR and HL7 used in communication [52]. M2M devices are similar to IoMT devices.
After sensing patient and environmental parameters, data is forwarded to the final applications through
gateways, enabling integrating sensors and the platform and interchanging data through the semantic
web paradigm [7].

4.3.4 oneM2M
oneM2M specification proposes to bring together all components in the IoT solution stack, with an
architecture based on standard middleware technology in a horizontal layer, which interlinks devices,
communications networks, cloud infrastructure, and IoT applications.

Recently, some articles [7,53–58] have proposed and discussed new architectures of IoT-based e-
Health systems, also known as IoMT. For example, based on M2M specifications, these architectures
are commonly based on multilayering abstraction where network components are involved in the overall
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specification, allowing tasks like device discovery, device identification, and binding between device
and applications.

4.3.5 Smart appliances reference ontology
The ETSI Technical Committee for Smart Machine-to-Machine Communications (SmartTM2M) [59]
has been promoting oneM2M Base Ontology with extensions in many IoT domains with SAREF. [60,
61] (Smart Appliances REFerence ontology), an open ontology for sharing and understanding semantic
data across IoT devices and servers using different technologies among several domains.

Moreira et al. [62] presented SAREF4Health, an extension of SAREF, where authors proposed to
address the verbosity problem of SAREF messages in IoT scenarios of real-time electrocardiography
(ECG), where data needs to be represented as frequency-based time series of measurements observed
by sensors.

Although several studies have been carried out or in progress that addresses semantic interoperabil-
ity in IoT-enabled e-Health systems, it remains an open challenge in this field. Thus, in addition to
characterizing a scenario similar to that of EHR systems, this situation demonstrates the great effort
required to overcome the problem of semantic interoperability under these two different perspectives.

These two environments must complement each other to obtain efficient semantic health models,
and thus build consistent systems that can benefit from all available data. In the current scientific liter-
ature, few solutions rely on the use of semantic models for EHR systems and integrate with models for
monitoring and remote communication systems.

4.4 Semantic-based connected objects in e-Health
With the introduction of sensor-based systems in healthcare, new challenges concerned to the manage-
ment of a huge amount of data generated by sensors and monitoring devices became a reality. Big data
technologies would easily address this issue if it were not to interlink potential health data sources to
view patient conditions comprehensively.

One of the recent advances in the healthcare industry involves continuously monitoring patients.
Physicians can monitor patients’ conditions through an information system integrated with data from
various records such as these patients’ history and their real-time health conditions and environmental
parameters that could interfere with the patient’s treatment. We can highlight a wide variety of ap-
plications in healthcare that are based on remote monitoring devices like monitoring glucose level,
electrocardiogram, blood pressure, body temperature, oxygen saturation, rehabilitation system, medi-
cation management, in addition to many others.

Thus, linking device and sensor data with EHR data would be an expected requisite to any e-Health
solution. The interoperability issue then would become even more latent because of the complexity
and heterogeneity of existing devices. The communication between these different objects is not trivial,
mainly because manufacturers create equipment that can maintain different proprietary protocols and
systems.

These two distinct contexts must be considered together aiming to solve the interoperability prob-
lem and achieve the maximum use of available data. As discussed in the text, the semantic models
approach is a consensus in solutions for the issue. A data-driven resolution must so be the starting point
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FIGURE 4.3

An overview of the data-driven e-Health life cycle.

for systems and architectures. Following this approach, some requirements are essential. As shown in
Fig. 4.3, the data flow, from acquisition to persistence, can involve some important aspects that will
influence solutions.

Semantic-based connected objects are essential for increasing the quality and efficiency of e-Health
solutions, reducing costs, increasing the quality of life, and enriching the user’s experience [63]. We can
use semantic web technologies to define and model data collected from devices and sensors and then
normalize structures and relationships from EHR systems in a fully-integrated and fully-interoperable
perspective.

Back again to our case study, we can now glimpse an integrated system where sensors data will
be part of the EHR, allowing all users to get comprehensive patient data. The accuracy of diagnoses
and treatments will be further increased, increasing the patients’ quality of life. In the next few years,
connected objects like smartphones, weareables, and medical devices will be an integral part of EHR
systems worldwide.

4.4.1 Semantic integration of IoT and EHR systems
Just a few works in the literature address the interoperability issue between EHRs and IoT/IoMT,
proposing solutions composed of frameworks and architectures (Table 4.1). Although the ontology
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alignment problem is still an open research problem [64], some of these works made progress in this
area considering the health domain. Standardization efforts will also be decisive factors for this reality
to materialize.

In [7], authors proposed a solution based on the alignment of SSN ontology and an open EHR-based
ontology for IoT platforms. In addition, they also presented an extension of the M2M ETSI standard
based on semantic technologies to provide interoperability between IoMT and EHR. Following seman-
tic web principles and considering the use of both standards, they intend to provide an interoperable
environment with a standardized query mechanism. Despite the progress in semantic interoperability
between EHR and IoT platform, this work only considers the openEHR and SSN standards.

Peng and Goswami [33] presented a method to integrate health services, implemented by RESTful
Web APIs or published as Linked Data, and SSN/SOSA ontology-described WoT devices that adopted
HL7 FHIR. Data is modeled with the Linked Health Resources (LHR) ontology to aggregate health and
environment data, which are integrated as a data resource graph. In the same way, as discussed in the
previous work, this method is based on one standard, FHIR.

A conceptual semantic-based healthcare collaboration framework was presented in [30]. The frame-
work is based on an IoT infrastructure to allow knowledge exchange between different healthcare
systems. In a fog layer at the edge of the network, there is a semantic gateway that offers a restful
API to give access to healthcare information of each system for collaboration. The framework per-
forms a mapping of different data sets to local ontologies for each healthcare system and after that to
a global ontology. Nevertheless, the authors do not detail the ontology mapping process and nor how
they consider the IoT infrastructure in the semantic model.

Alamri [46] proposed a middleware to support semantic interoperability for IoT data and EHR
systems by using ontology mapping. The middleware is composed of three components, which are
based on triple stores where data is stored and queried. In this work, the author proposed to model EHR
data with SNOMED-CT ontology and IoT data with SSN. A significant drawback is that the author
does not detail the ontology mapping process, and there is no definition of EHR systems.

In [62], authors proposed a discussion about the verbosity problem of SAREF when used for real-
time electrocardiography signal sensing with time-series data. To overcome this problem, they proposed
SAREF4Health, an extension of SAREF that addresses this problem, combining ontology-driven con-
ceptual modeling and RDF implementation of stream data. The model is based on a reference ontology
enhanced by a standardization procedure that considers the RDF serialization of the HL7 FHIR stan-
dard. There is no reference to any EHR system, and that is a drawback of this solution.

Dridi et al. [65] proposed a framework for IoT and healthcare data called SF4FI-EHR. It integrates
three categories of health-related data, EHR unstructured and structured data and IoT/medical device
data. Unstructured data are treated by Natural Language Processing techniques and the Metamap tool,
which map medical text to UMLS terminologies and after that transmitted to a RESTful FHIR server,
which is also used to deal with structured data. IoT data is annotated with a proposed ontology that is
an extension of SSN ontology. The integration process is supported by mapping ontologies to FHIR.

A platform for common data interchange format and semantic interoperability was proposed in [52].
Authors considered M2M devices for communications between devices and services. A smartphone
acts as a Gateway employing the HL7 message format in the communication with openEHR-based
storage. They do not address interoperability problems at the sensor level and consider a few different
devices with sensing capability.
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Table 4.1 Semantic models concerning Connected Objects and EHR systems.

Work Communication IoT EHR Restful
Rubí and Gondim [7] M2M SSN openEHR No

Peng and Goswami [33] – SSN/SOSA HL7 FHIR Yes

Sigwele et al. [30] – – Custom Yes

Alamri [46] – SSN *SNOMED-
CT

No

Moreira et al. [62] – SAREF HL7 FHIR No

Dridi et al. [65] – SSN HL7 FHIR Yes

Pereira et al. [52] M2M – openEHR No

Villanueva-Miranda et al. [66] – – No

Abinaya et al. [67] – Custom – No

Villanueva-Miranda et al. [66] have just analyzed the enhancement of semantic interoperability in
IoMT platforms with two main approaches of ontology alignment. Nevertheless, there is no standard-
ized EHR definition. Abinaya et al. [67] developed a centralized ontology-based system for decision
making in the Internet of Things (IoT) environment. The integration with IoMT semantic devices is not
explicit, and there is no standardized EHR definition for the ontology.

Some proposals [30,46] implemented their storage systems based on EHRs, but they do not address
the standards to allow interoperability in the exchange of clinical data between EHR systems. Regarding
functional architecture, proposals like [7,52] adopted the ETSI M2M standard approach as a way to give
more control over communication platform, and consequently, over the overall solution. Regarding the
provision of a Restful API, there are three proposals that offer it someway, [30,33,65]. Two of these
works [66,67] have not considered standards in the interoperability in IoT and EHR systems.

4.4.2 Data-centric e-Health perspective
Although the relevance of devices, infrastructure, protocols, software systems, etc., data is the first-
class citizen in the context of semantic models for e-Health systems and IoT-based systems. Thus, data
management must receive special treatment in all aspects, including processes of acquisition, modeling,
and persistence.

Taking into account the complexity and heterogeneity issues of the healthcare sector by itself is a
challenge. Besides many others, it includes patients with different health and social conditions, govern-
ment regulations, different stakeholders, specialized clinical knowledge bases such as specific medical
therapies, prescriptions, and treatments.

Several advances were made in e-Health with EHR systems, for example. However, as discussed in
this text, the great challenge is to ensure interoperability between systems due to their integration need.
The advantage of using semantic models, in this case, is indisputable and, in addition, it brings another
perspective to the solutions because of data treatment.

Semantic web technologies are one of the most powerful tools to enable data-centric solutions [68].
The data model precedes the implementation of any given application and will be around and valid long
term. In this sense, after the model definition, a significant part of the effort should focus on carrying
out data extraction, preparation, and persistence procedures.
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4.4.2.1 Modeling
The data modeling step will dictate the integration capability of systems. Healthcare semantic models
composed of ontologies from IoT-based and EHR systems are a trend. According to [7] and [48] and
as far as we know until now, the literature lacks proposals for interoperability between EHRs and
IoT/IoMT.

In e-Health and IoT/M2M systems, standardization bodies do not agree on semantic interoperability
proposals to support healthcare systems. Thus, this is the first great challenge that must be overcome by
both industry and academy. New solution proposals can include any e-Health and IoT/M2M ontology as
long as they ensure their horizontal (same domain) or vertical (different domain) alignment to integrate
these two contexts effectively.

In the data-centric paradigm, the modeling step must be the starting point to solutions proposals.
As ontology construction is a complex task, it demands the use of methodologies to give adequate sup-
port. Methontology, a framework presented by Fernández-López et al. [69] was conceived to facilitate
the construction of ontologies. It defines a development process and life cycle, which consists of the
following steps: specification, conceptualization, formalization, implementation, and maintenance.

Neon methodology [70] is supported by a reengineering perspective to integrate ontologies by their
reuse from a public repository in addition to a set of known ontology design patterns. A methodology
proposed by Noy and McGuinness [71] suggests guidelines as the definition of domain and scope of the
ontologies, ontologies reuse, enumerating relevant terms, classes and their properties, class hierarchy
definitions, in addition to others.

Whereas that ontology assessment is part of ontology construction and maintenance, a methodology
was proposed in [72] to assess the semantic model of SHCO [73]. SHCO is a smart healthcare ontology
that has been designed to deal with healthcare data and IoT devices in a way that data collected from
devices are transferred to a knowledge base and vice versa. Authors claim that any existing healthcare
ontology can align with this ontology and can interact with IoT devices.

Moreover, graph-based healthcare data can be subjected to machine learning algorithms looking for
hidden patterns from data, opening opportunities for applying both existing and new algorithms.

4.4.2.2 Preprocessing
Most solutions are based on cloud where data are stored, processed, and consumed by applications.
Data can be collected from sensors/devices, relational databases, file systems, and knowledge bases.
Cloud storage allows systems data access interchangeably in addition to the other advantages offered
by this environment.

As with other domains, healthcare IoT-based systems impose several challenges related to the big
data five v’s, namely velocity, volume, value, variety, and veracity. Due to the most different acquisition
methods (streaming, queries, file system access), representation forms (e.g., numeric values, texts, im-
ages), and the most different data sources, it is important to establish the importance of data modeling
in this case. Healthcare IoT-driven solutions should consider data generation, processing, storing, and
exploration [74].

Data must be preprocessed to overcome unwanted problems like those supported by data cleaning
or imputation, for example. Methods like this could bring data trusted to different processes like data
storage or when applying machine learning algorithms. As important as these aspects but elementary to
the data-centric treatment, one should consider the semantics annotation to process data from the two
contexts in integrated.
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The integration of huge data collections from patient records and vital signs obtained from IoT
devices could improve the performance of many different machine learning algorithms. However, it
would be essential to consider an architecture that involves tools to manage and exploit data to generate
cross-domain knowledge, which is difficult if we consider each data source separately [48].

4.4.2.3 Persistence
When using semantic models, it is necessary to specify the persistence mechanism to facilitate access
to data and the possibility of carrying out the reasoning using an inference engine. As Triple Stores,
RDF, and SPARQL, semantic web standards have been used in this case.

Due to the heterogeneity and the volume of gathered data, NoSQL databases (e.g., Hadoop, Spark)
are standard technology in big data scenarios. A recent trend for data persistence is using blockchain,
which can perform with semantically annotated data.

Another trend found in a fair number of works in the literature is the use of cloud/fog computing for
persistence. Cloud computing has been widely adopted with IoT solutions, providing many different
services. Nevertheless, one must have to take into account the drawbacks related to security and latency
issues.

4.5 Concluding remarks
This chapter discussed the importance of semantic technologies to overcome interoperability problems
in healthcare systems. The impact of remote monitoring devices and sensors was also crucial to this
context because of the many possibilities for data collection from the most different devices and sys-
tems. Thus, we presented EHR systems and the main approaches used to address the interoperability,
highlighting the role of semantic models in this context.

After that, we discussed connected objects in the health domain and the importance of semantic
models to address interoperability between devices. Interoperability has been a research challenge in
the last few years, and its importance is increasing due to the also increasing number of new devices
and also to the existing different EHR systems.

Semantic web tools have been widely adopted to face this problem. Despite the advances already
achieved, there are just a few proposals in the literature regarding the interoperability between con-
nected objects and EHR systems. A discussion about existing works is presented latter in the chapter.
Through a use case, we intended to highlight the importance of this approach during the text.

A data-centric view was used to put semantic models as a central figure in searching for future
trends. We raised some concerns from this approach that can influence new research and development
opportunities to construct more efficient systems that can further benefit the health system, and espe-
cially patients.
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5.1 Introduction and motivation
The recent technological changes, the widespread use of the internet, and the dynamic developments in
communication technologies and sensors have created a connected world. As a result of these develop-
ments, the Internet of Things (IoT), which is accepted as the next evolution of the internet has emerged.
The Oxford dictionary defines IoT as “the connection of devices within everyday objects via the inter-
net, enabling them to share data” [1]. IoT provides communication among everyone and everything
by extending the capabilities of the internet to enable machine-to-machine communication (M2M) [2].
Thereupon, the IoT integrates the physical world and information world to form a new way of commu-
nication. The integration of these interconnected objects is called the future internet [3]. The internet
is now in the process of becoming a fully integrated future internet, and consequently, the internet will
become the IoT [4].

In IoT, things that share information, communicate, and coordinate with each other are called smart
things or smart devices. A smart thing is defined as an electronic device that communicates to other
devices and services and operates to some extent interactively and autonomously, where its behavior
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FIGURE 5.1

Top 10 IoT application areas in 2020 [11].

is characterized by loaded software and operating environment [5]. All smart concepts such as smart-
phones, smartwatches, smart thermostats, smart locks, smart refrigerators, smart TVs, smart medical
devices, smart traffic controls, autonomous vehicles, etc. constitute the connected world system. As the
number of installed IoT devices around the world was 15 billion in 2015, the predicted IoT device num-
ber is 75 billion devices for 2025 [6]. The Statista report states that the number of internet-connected
devices will reach 10 billion in 2021 [7]. Cisco expects the number of connected devices to reach 500
billion by 2030 [8]. According to the IDC forecast, there will be 41.6 billion connected IoT devices or
things generating 79.4 zettabytes of data in 2025 [9]. Also, the global IoT market, which was $308.97
billion in 2020 is projected to grow from $381.30 billion in 2021 to $1,854.76 billion in 2028 [10].
Fig. 5.1 shows the top ten IoT application areas in 2020 based on IoT analytics’ research results [11].
As foreseen, in this connected world where everything is connected to everything, the IoT has gained in-
creasing importance both in our personal lives and in various fields such as industry, healthcare, energy,
retail, cities, supply chains, etc. Moreover, the COVID-19 pandemic has also accelerated the growth of
IoT.

Today, IoT is an indispensable part of our daily lives. As in other application domains, IoT also
became an emerging trend in healthcare systems. There are numerous IoT-based applications in the
healthcare domain such as medical devices, smart sensors, remote monitoring, and tracking. The
healthcare information system aims to reduce the cost of treatments, to improve the effectiveness and
efficiency of health workers’ decisions, to improve the healthcare quality and quality of personal life by
ensuring qualitative, preventive, and curative healthcare to people. Within this scope, IoT offers various
benefits for the goals of healthcare information systems. The benefits of IoT-based healthcare solutions
include:

• to monitor patients in real-time,
• to track patients’ health conditions continuously,
• to detect potential health disorders or diseases early,



5.1 Introduction and motivation 91

• to assist remote medical assistance,
• to automate patient care,
• to improve the quality and efficiency of treatments,
• to provide patient-centric care,
• to improve patient health,
• to provide a better connection between the doctor and the patient,
• to increase patient satisfaction,
• to increase the quality of life by guiding the patient’s experience,
• to take a more active role in managing personal health,
• to reduce costs,
• to reduce the time spent from the perspective of health care providers,
• to use data for medical research purposes.

The McKinsey Global Institute report states that the greatest benefit of IoT in healthcare comes
from the improved efficiency in treating patients with chronic conditions [12]. The report also indicates
that the treatment costs for chronic diseases constitute 60% of total healthcare spending and estimates
that remote monitoring could reduce this cost by 10% to 20%. In addition to these benefits, the global
pandemic has also led to a rapid increase in the use of IoT within the healthcare sector. For example, it
is possible to gain medical help without physical contact and remotely track a patient’s condition. Also,
IoT devices are used to disinfect and sterilize rooms against COVID-19 contamination.

Consequently, IoT has improved the lifestyle of individuals and people have become more reliant
on IoT-based solutions. However, these improvements have also increased the privacy and security
challenges in IoT. Security professionals consider IoT as the vulnerable point for cyber attacks [13].
Thus, the security and privacy of this connected world should be ensured. The IoT security report of
Palo Alto Networks [14] states that 57% of IoT devices are vulnerable to IoT attacks, 83% of devices
run on unsupported operating systems, 98% of IoT traffic are unencrypted, and the challenges are
growing. Fig. 5.2 shows the IoT devices that have the highest security issues [14]. The report also
specifies that 26% of the threats are caused by user experience (cryptojacking, phishing, password),
33% of the threats are malwares (botnet, backdoor trojan, ransomware, worm), and 41% of the threats
are exploits (network scan, remote code execution, command injection, buffer overflow, SQL injection,
zero-day, other exploits). The top cyber threat types for each threat are shown in Fig. 5.3 [14].

Data that is collected by IoT devices are mostly sensitive and include metadata such as date, time,
and location. In IoT-based healthcare solutions, devices capture and process sensitive personal health
data. As seen from the IoT security report of Palo Alto Networks, IoT devices and services are vul-
nerable to threats and attacks. Therefore, the devices, their associated communication protocols, data
and transmission of data need to be secured. On the other hand, traditional security countermeasures
and privacy enforcement cannot be directly applied to IoT technologies due to their limited computing
power, besides the high number of interconnected devices arise scalability issues [15]. Hence, the secu-
rity and privacy needs of both patients and healthcare providers must be satisfied. Thus, the security and
privacy challenges must be managed, monitored, and related measures must be taken. For this purpose,
there are numerous studies presented in the literature. This chapter focuses on the semantic web-based
studies for the related solutions on security and privacy aspects of IoT-based healthcare systems.

The semantic web is accepted as the extension of the current web and described by Tim Berners-Lee
[16] as “The Next Web.” The semantic web represents knowledge in a machine-interpretable format.
Therefore, the semantic web enables to share, reuse, and integrate information, and also to infer new
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FIGURE 5.2

The IoT devices with the highest security issues [14].

FIGURE 5.3

The top IoT cyber threats [14].

knowledge from the existing facts and rules. Thus, the semantic web technologies provide semantic
interoperability and machine-to-machine communication. The semantics that is provided by the se-
mantic web is the explicit interpretation of the domain knowledge to make machine processing more
intelligent, adaptive, and efficient [17]. Semantic interoperability enables different parties to access and
interpret unambiguous data [18]. The interpreted data is also used for the decision-making process. In
IoT, the connected things exchange data with each other. Therefore, combining semantic web and IoT
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is considered a reasonable and suitable solution to promote interoperability among IoT’s resources, in-
formation models, data providers, and consumers [18,19]. Besides, semantic web technologies can be
used to turn the IoT data into knowledge.

The main objective of this chapter is to contribute a better knowledge and understanding of security
and privacy issues in the IoT ecosystem and examine the current status in IoT-based healthcare systems.
Thus, the fundamental security and privacy concepts in IoT are covered, the security and privacy con-
cerns for the IoT healthcare systems are presented, the current semantic web-based solutions to ensure
security and privacy in IoT ecosystem and IoT-based healthcare systems are examined, and challenges
in the related field are discussed.

5.2 Security and privacy requirements in IoT
Security refers to the methods, tools, and personnel to protect objects against unauthorized access
and use, theft, and harm. In computer science, security enables the protection of digital assets from
threats and vulnerabilities. In the 1970s, security was mostly concerned with guarding the rooms. Today,
with the recent developments in information and communication technologies, and as well as in IoT
technology, vast volumes of data are collected, managed, processed, and shared. As a result of these
developments, today’s security concept deals with high-profile breaches and attacks that threaten the
national security of countries and the economic prosperity of countries, businesses, and individuals.

Privacy is a core value of an individual and has been acknowledged as a fundamental right by the
European Convention on Human Rights and the Universal Declaration of Human Rights [20]. In 1890,
U.S. Justice Louis Brandeis called privacy “the right to be left alone” [21]. Despite being a moral/legal
right, privacy is also perceived as the interest that individuals have in sustaining a personal space, free
from interference by other people and organizations [22]. This personal space includes the privacy of the
person/physical privacy (the integrity of the individual’s body and the physical space of an individual),
the privacy of personal behavior, the privacy of personal communications, and the privacy of personal
data. In the modern world, privacy is defined as “the ability to control the acquisition or release of
information about oneself ” [23]. In the perspective of IoT, privacy is specified as the border where
information from smart objects is exposed to the outside world [24]. Privacy-Enhancing Technologies
(PETs) such as encryption, protocols for anonymous communications, attribute-based credentials, data
masking techniques, and private search of databases are used to protect data and to prevent privacy
breaches.

Sensitive data falls into three categories [25]: explicit identifiers, quasiidentifiers, and privacy at-
tributes. Explicit identifiers represent any Personally Identifiable Information (PII), such as social
security number, patient name, and contact details. PII is any information about the individual that
can be used to distinguish the individual’s name, social security number, date, and place of birth or any
other information that is linked or linkable to an individual, such as medical, educational, and financial
information [26]. Quasiidentifier is a set of attributes that can be linked with external information to rei-
dentify an individual’s identity, such as ZIP code, age, gender, and date of birth [27]. Privacy attributes
represent any specific identifiable information about a person, such as any health sickness and disabil-
ity. The privacy of these sensitive data must be preserved when data is published. Hence, an individual’s
sensitive data must be indistinguishable after the data publishing. For this purpose, data anonymization
techniques that perform various operations on data before it is shared publicly are used. The purpose of
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data anonymization is to enhance the privacy of individuals and to ensure that data cannot be misused
even if data are stolen [28]. Therefore, methods such as differential privacy [29], k-anonymity [30],
l-diversity [31], and t-closeness [32] are used to provide privacy-preserving data publishing.

As IoT technology has changed people’s daily lives and become indispensable, IoT devices are now
vulnerable to multiple types of threats and a prime target for attackers. Also, IoT data contain personal
data that should be kept confidential. Besides, security and privacy must be achieved at a satisfactory
level to provide data utility effectively. Thus, the security and privacy related issues are concerned
with managing information loss, the risk, and the cost of the loss. Therefore, the concepts of threat,
vulnerability, attack, and risk should be understood foremost. These concepts are defined as follows:

• Threat: A threat is any action that exploits a vulnerability in an asset and may cause damage or harm
to an asset either intentionally or unintentionally. The asset can be a person, a computer, a physical
device, and information such as a database, software code, etc. Threats may result in direct loss,
delays or denials, disclosure of sensitive information, modification of programs or databases, and
intangible such as loss of reputation [33]. Threats can be environmental (natural disasters outside
the control of humans such as earthquake, flood, storm, power outage, etc.), internal (generated by
internal sources, usually an insider from the organization), external (generated from the outside of
the organization) and man-made (any threat that is caused by human beings intentionally or unin-
tentionally such as malware installation, password disclosure, unauthorized access, etc.). There is
no source, list, or method that denotes all possible threats to assets. Yet, the Common Vulnerabil-
ities and Exposures (CVE) list [34] and the National Vulnerability Database (NVD) list [35] are
widely used public lists to track the known vulnerabilities and exposures. Also, MITRE ATT&CK
is a knowledge base of adversary tactics and techniques based on real-world observations and used
as a foundation for the development of specific threat models [36].

• Vulnerability: A vulnerability is a potential weakness that exploits a threat and causes unauthorized
access and data breach. A security vulnerability must exist for the threat to occur. If there is a
security vulnerability in a system, then there is a possibility that a threat will occur and the system is
open to potential attacks. Some vulnerabilities are weaknesses and some are just side effects of other
actions [37]. Vulnerabilities may result from weak passwords, software bugs, a script code injection,
malicious software such as a computer virus, etc. [33].

• Attack: An attack is an action that uses a vulnerability to exploit a threat. A person who per-
forms these actions is called an attacker. The software used to perform a malicious attack is called
malicious software (malware). Viruses, trojans, worms, and spywares are malwares that perform
malicious actions on a system.

• Risk: Risk is the probability that a particular threat will be realized against a specific vulnerability
to impact or harm an asset. Risk indicates a loss as a result of realizing a threat that exploits a
vulnerability. The amount of harm that a threat exploiting a vulnerability can cause is called impact
(cost) [37]. The most common risk identification is as follows:

Risk = Probability × Vulnerability × Threat

Security has three main principles: confidentiality, integrity, and availability, which are referred to
as the CIA security triad. These principles are defined as follows:

• Confidentiality: Confidentiality is a principle to protect information and systems from unauthorized
access. Confidentiality prevents unauthorized persons from accessing the data. Thus, information is
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specific only to entities that need access to information and only authorized entities can access the
information and the system. Confidentiality is an important component to protect personal data and
privacy. Privacy is the right of an individual to protect her personal data from unauthorized access
and disclosure. Hence, personal data must be processed according to the permissions granted by the
user to ensure user privacy.

• Integrity: Integrity prevents unauthorized modification of the data. Thus, only authorized entities can
modify or change the data. Integrity is concerned with the validity and accuracy of data. Integrity
ensures that only authorized entities can modify data and prevents authorized entities from making
unauthorized changes to the data.

• Availability: Availability ensures that information and systems are accessible to authorized entities
whenever they request it and used for authorized purposes. Usability is the state of being able to use
the information or resource that is needed to be accessed. If the information cannot be accessed or
used whenever it is needed, ensuring the confidentiality and integrity of the data will not be enough.

Each of these three principles involves a relevant protection mechanism. However, these principles
are not adequate for today’s security needs. Especially, the IoT ecosystem is more vulnerable to secu-
rity and privacy challenges. Security issues, such as identification, authentication, authorization, access
control, accountability, and nonrepudiation are also the main challenges in an IoT environment. Au-
thentication, authorization, and accounting are also known as the AAA model that is used to control
access to resources. The related security issues are defined as follows:

• Identification: Identification is the process of providing identifying information for the entity. An
entity can be a person or a system. Identification uses credentials such as usernames, login ID, etc.
to identify the entity.

• Authentication: Authentication is the process of proving that the entity is the person or entity whom
she claims to be. Authentication binds the user ID to an entity. Passwords are used to verify the
identity of the entity. Also, hardware/software tokens, smart cards, and biometrics are used for the
authentication process. Multifactor authentication should be preferred for the authentication process.
An authentication factor is a credential used for identity verification. Multifactor authentication uses
different identification characteristics to identify the user and verify the user information. Thus, each
additional factor increases the assurance of the authentication process. The most common example
is using a password together with a code sent to the user’s smartphone. The user must enter the code
sent in the SMS message after entering the password to verify her identity.

• Authorization: Authorization is the process of assigning privileges and granting permissions/rights
to an entity in order to access a resource and perform actions on that resource such as a program,
system, process, or information. Privileges indicate the allowed or prohibited/restricted actions that
are defined for the entity. The authorization process ensures that the user or the system has sufficient
rights for the actions that will be performed on the resource and provides a correct level of access to
users based on their credentials.

• Access Control: Access control is a mechanism that limits access to a resource and controls whether
the entity has the right to access the resource or not. The access control first checks if the entity who
requests to access the resource is authenticated in order to tailor the access rights to the entity. Then
the access control mechanism checks the authenticated user’s privileges for the actions that the user
wants to perform on the resource.
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• Accountability/Auditing: Accountability is the process of keeping a record of the actions that are
performed by the user on the resources. Thus, it is ensured that users take responsibility for the
actions they performed. Accountability links users to actions and an action can be traced back to the
user who performed this action.

• Nonrepudiation: Nonrepudiation is the process to ensure that the entity cannot deny the action that
the entity is performed on the resource. Nonrepudiation provides the proof that is needed to ensure
the security principles of confidentiality and integrity.

5.2.1 Security and privacy challenges in IoT
IoT security is concerned with any “thing” that is connected in the ecosystem and every day the number
of connected devices is increasing. Therefore, IoT is facing various security challenges due to the
increasing connectedness and also the ongoing digitization process in various domains. According to
the Netscout Threat Intelligence report, IoT devices are attacked within 5 minutes of being plugged into
the internet [38]. The Open Web Application Security Project (OWASP) IoT project provides help to
manufacturers, developers, and consumers to understand the security issues associated with the IoT and
enables users to make better security decisions [39]. The OWASP IoT project also maintains a security
analysis of IoT that includes vulnerabilities, threats, attack surface areas, and firmware analysis.

The main security and privacy challenges based on the generic three-layered architecture of IoT are
shown in Fig. 5.4. The security of an IoT system should include the security of the whole IoT system
crossing from the perception layer, network layer, and application layer.

The perception layer is the physical level of objects. Objects in this layer interact with the external
world and other sensors. These physical sensors are referred as smart objects. Smart objects sense and
gather data about the environment. Sensors and actuators are essential components of smart objects
to collect data from the environment. The common threats against the perception layer are eavesdrop-
ping, replay attack, timing attack, jamming attack, tag removal, tag destruction, KILL command, node
capture, and fake node/malicious node injection [40,41].

The network layer is also known as the transmission layer and connects to other smart things and
network devices. The network layer transmits and processes sensor data. The common threats against
the network layer are denial of service (DoS) attack, the man in the middle attack, sinkhole attack, Sybil
attack, traffic analysis, routing attack, RFID spoofing, and RFID cloning [42,41].

The application layer is the interface between the IoT device and the network layer. The IoT device
communicates the network through the application layer. The application layer offers application-
specific services, handles data formatting and presentation, provides solutions such as reporting, ana-
lytics, and device control requested by the end-users. The application layer covers various applications
such as smart healthcare, smart home, smart cities, smart factory, and smart vehicles. The most common
threats against the application layer are phishing attack, cross-site scripting, malicious code injection,
sniffing attack, malwares (virus, worm, trojan, etc.), and DoS attack [24,41].

Besides these threats, encryption attacks such as side-channel attacks and cryptoanalysis attacks are
also security concerns for an IoT system. Also, privacy concerns and privacy attacks have a signifi-
cant challenge in an IoT system as IoT devices gather, analyze, and transmit sensitive data across the
network. The collection of massive amounts of data and powerful analyzes to transform the meaning-
less data into information leads to data breaches and increases the privacy concerns of users. In order
to preserve privacy, data about an individual should not be available to other individuals and organi-
zations, and the individual must have a substantial degree of control over her data and its processing
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FIGURE 5.4

Threats against the 3-layered IoT architecture.

(acquisition, use, and disclosure of personal data) by other parties. In terms of privacy, identification,
profiling, lifecycle transitions, linkage, privacy-violating interaction and presentation, inventory attack,
localization, and tracking are the most common threats in an IoT system [24].

5.2.2 IoT security attacks and threats
The increase in the number of connected IoT devices and the complexity of IoT ecosytem introduce
numerous security and privacy threats. Besides, most of the IoT devices are not designed with secu-
rity issues and they do not focus enough on security and privacy. Also, a significant quantity of data
moves between IoT devices and across communication networks. The main security issues in IoT are
weak password protection, insufficient data protection mechanisms, insecure interfaces, poor IoT de-
vice management, weak updates, and lack of regular patches.

The IoT attack surface consists of devices, communication channels, software, and applications.
Devices are the primary means that are used by attackers. Thus, the security vulnerabilities of devices
could possibly allow an attacker to initiate an attack. Communication channels connect components of
the IoT ecosystem. Therefore, security issues in communication channels affect the entire ecosystem.
The vulnerabilities of software and applications enable attackers to compromise systems. The attack
surface of devices, communication channels, software, and applications and their vulnerabilities are
summarized as follows [39]:
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– Applications: The main vulnerabilities are weak passwords, insecure password recovery mecha-
nism, insecure data storage, username enumeration, and account lockout.

– Device Firmware: Firmware version display, firmware latest update dates, firmware downgrade
possibility, vulnerable services, sensitive data exposures such as backdoor accounts and encryption
keys are the primary vulnerabilities.

– Device Memory: The vulnerability comes from the third-party credentials and the sensitive data
such as clear text usernames and passwords.

– Device Network Services: The major vulnerabilities are Denial of Service (DoS), injection, replay
attack, buffer overflow, user and administrative command line interfaces, insecure password recov-
ery mechanisms, and unencrypted services.

– Device Physical Interface: Firmware extraction, user and admin command line interfaces, privilege
escalation, device ID, and serial number exposure are the main vulnerabilities.

– Device Web Interface: The vulnerabilities consist of standard web application vulnerabilities and
web credential management vulnerabilities such as weak passwords, username enumeration, ac-
count lockout, and insecure password recovery mechanisms.

– Third Party Backend APIs: The unencrypted Personally Identifiable Information that is sent, device
information leakage, and location information leakage are the main vulnerabilities.

– Vendor Backend APIs: Weak authentication and access controls, injection attacks, inherent trust of
applications, and hidden services are the major vulnerabilities.

The IoT attack surface shows that all the major components of the IoT ecosystem can be ex-
ploited. Therefore, security and privacy issues should be considered from the design phase to the
overall configuration and functionality of the entire system. For this purpose, secure settings of devices,
communication channels, software, and applications should be ensured. Also, security and privacy
mechanisms should be integrated in every aspect of the IoT ecosystem. Besides, the security strategies
for each component of the IoT ecosystem should be built.

5.3 Security and privacy concerns in IoT-based healthcare systems
The IoT ecosystem is used in every domain and has a prominent impact on people’s daily lives. Health-
care is one of the major domains that IoT solutions that are widely used. The healthcare sector is one
of the fastest to adopt the IoT [43]. The healthcare industry aims to treat people and to get people
healthy living habits. The healthcare industry has revolutionized and gone through various transforma-
tions from Healthcare 1.0 to 4.0 [44]. Healthcare 1.0 was doctor-centric and records were maintained
manually. Healthcare 2.0 was partly technology-centric, manual records were replaced with Electronic
Healthcare Records (EHRs) and monitoring devices are used to support the diagnosis. Healthcare 3.0
was patient-centric, but not capable to handle real-time big medical data [45]. Healthcare 4.0 is the era
of smart healthcare in which both clinicians and patients are involved. Healthcare 4.0 uses artificial
intelligence, real-time monitoring, data analytics, smart sensors, IoT, medical robots, cloud computing,
fog computing, and telehealthcare technologies. In Healthcare 4.0, everybody is connected or associ-
ated through wearable devices irrespective of their locations for efficient and accurate treatment [45].
In today’s smart healthcare era, the security and privacy of healthcare records are challenging due to:
(i) EHR servers are being used to store patients’ health records, (ii) these health records are stored
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at the cloud server to be accessed by only authorized users such as clinicians, hospital staff, medical
and government agencies for diagnosis, treatment and data analysis, (iii) diagnosis reports are also
being accessed by patients using their smart electronic gadgets, and (iv) notifications are sent to pa-
tients or emergency contacts of patients [46]. The Protenus Breach Barometer Report states that 32
million patient records in the healthcare industry have been infringed and over 3 million patient records
are breached by hospital insiders between January and June 2019 [47]. Therefore, the lack of proper
security measures results in multiple levels of risks to the patient’s health and privacy.

The things in smart healthcare consist of heart monitoring implants, insulin pumps, smart ther-
mometers, pacemakers, etc. These smart devices collect data, send and receive data between other
devices, track information for data analysis, and keep a medical history. While smart devices increase
the efficiency, accuracy, and productivity of healthcare services, they also enlarge the attack surface
of healthcare. Therefore, devices are the main target of attackers. Cyber security researches show that
several implantable medical devices (IMDs) are vulnerable to attacks of varying severity [48]. Hackers
exploit the weaknesses of IoT devices, gain control over these devices and perform malicious activi-
ties, such as exposure of valuable data, confidential information, and botnet attacks [49]. For example,
privacy and DoS attacks are conducted on Implantable Cardioverter Defibrillator (ICD) [50], software
attacks are performed on implantable neurostimulators [51], security attacks are demonstrated on in-
sulin pumps [52]. The hijacking of a medical device is called medjack. Hackers use medjack to create
backdoors in hospital networks, launch targeted attacks at hospital networks, and steal medical records.
Another motivation behind the medjacking is the high demand in the Darknet market for healthcare-
related information [53]. Furthermore, hackers may alter the operation of these medical devices and
cause these devices to operate in a life-threatening manner. Hence, the consequences of these security
attacks can be lethal. As the number of devices is increasing, security vulnerabilities and additional risks
are exposing. Thus, the Food and Drug Administration (FDA) requires medical device manufacturers
to build security into their systems to manage postmarket cybersecurity vulnerabilities for marketed
and distributed medical devices [54].

IoT devices use cloud-based solutions to store and analyze data for further decision-making. Trans-
mission of critical medical information to the cloud without addressing security issues introduces the
risk of hacking and data corruption [55]. As a result of this, data is vulnerable to unauthorized access.
Thus, the assignment of different privileges to different users must be provided with an effective access
control mechanism, and policy management must be enforced. Besides, identification and authentica-
tion techniques should also be used to prevent unauthorized access. An access control mechanism must
also be applied for accessing the IMDs and only authorized users must access medical devices.

IoT communication environment facilitates and supports people’s daily activities. On the other hand,
it suffers from various security and privacy issues, such as replay attacks, the man-in-the-middle attack,
impersonation, privileged-insider, remote hijacking, password guessing, DoS attacks, and malware at-
tacks [56]. Malware botnets such as Mirai, Reaper, and Echobot lead to attacks on confidentiality,
integrity, availability, and authenticity. These attacks disclose or alter the sensitive data of IoT commu-
nication, or sensitive data may not be available to authorized users [56]. In the DoS attack, the network
is flooded with a lot of useless traffic caused by an attacker. The result of a DoS attack is the resource
exhaustion of the targeted system due to the unavailable network. DoS attack is a security concern
directed to both the network and application layers of the IoT architecture. Today’s sophisticated DoS
attacks offer a smoke screen to carry out attacks to breach the defensive system and data privacy of the
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user by deceiving the victim into believing that the actual attack is happening somewhere else [24]. The
security issues against IoT architecture are categorized in three levels [57]:

1. Low-level security issues: Jamming adversaries, insecure initialization, low-level Sybil and spoofing
attacks, insecure physical interface, sleep deprivation attack.

2. Intermediate-level security issues: Replay or duplication attacks, insecure neighbor discovery, buffer
reservation attack, Routing Protocol for Low-Power and Lossy Networks (RPL) routing attacks,
Sinkhole and Wormhole attacks, Sybil attacks on intermediate layers, authentication and secure
communication, transport-level end-to-end security, session establishment and resumption, privacy
violation on cloud-based IoT.

3. High-level security issues: Constrained Application Protocol (CoAP) security with internet, insecure
interfaces, insecure software/firmware, middleware security.

The application layer of the IoT architecture gathers patients’ private data, which leads to potential
privacy problems. The primary privacy issue in the healthcare domain is to provide the confidentiality
of patients’ Electronic Medical Records (EMRs), EHRs, and Personal Health Records (PHRs). The
Healthcare Information and Management Systems Society (HIMSS) defines EMR as “an electronic
record of health-related information on an individual that can be created, gathered, managed, and con-
sulted by authorized clinicians and staff within one healthcare organization,” EHR as “an electronic
record of health-related information on an individual that conforms to nationally recognized interop-
erability standards and that can be created, managed, and consulted by authorized clinicians and staff
across more than one healthcare organization” and PHR as “an electronic record of health-related in-
formation on an individual that conforms to nationally recognized interoperability standards and that
can be drawn from multiple sources while being managed, shared, and controlled by the individual”
[58]. Patients’ personal data (such as demographics, social security number, and credit card) and health
records are often viewed, copied, or modified without patients’ consent. Data breaches through these
records arise from hacking, malware, and insider threats. Consequently, these data can be modified and
misused. Also, users’ location data is considered as personal information. Therefore, location data is
sensitive data and the release of the location data to third parties is also an important privacy issue. In
IoT, data that is collected by smart medical devices often includes metadata such as location and time.
Thus, such information has to be well protected to preserve personal privacy.

In the new informational ecosystem, data is power, and access to sensitive data is a profitable en-
terprise. The IoT-based healthcare information systems enable to collect patients’ sensitive data and
store these data on cloud servers or network servers to make them accessible anytime and anywhere.
Also, smart devices are used to access these data. The use of smart devices, software vulnerabilities,
security failures, and human error cause these databases to be accessed by unauthorized users, which
leads to the exposure of sensitive data in the form of data breaches [59]. Further, phishing attacks, data
theft, and malwares (such as viruses, worms, trojan horses, ransomwares, rootkits, etc.) cause breaches
to occur. Besides, unauthorized access from insider attackers results in the loss, theft, or disclosure
of sensitive healthcare data. The Cost of a Data Breach Report conducted by Ponemon Institute and
analyzed by IBM security states that healthcare experienced a substantial increase in data breach costs
year over year and in 2021 healthcare data breaches cost $9.23 million per incident and a $2 million
increase over the previous year [60]. The report also indicates that 44% of the breaches exposed per-
sonal data, such as name, email, password, and healthcare data. Data breaches in medical records result
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in reduced patient safety, privacy violation, operational disruptions, financial loss, legal ramifications,
loss of reputation, and trust.

Despite the attacks on medical devices, another security risk associated with IoT is social engi-
neering attacks. Social engineering attack is the act of manipulating people and it is a psychological
attack directly on humans using medical devices. Social engineering is focused on diverting the user
from making reasonable decisions, causing the user to make irrational decisions [49]. As a result, the
attacker deceives the user to give her confidential information to the attacker or to perform an action
that will breach a system’s information security.

Hereby, the key security and privacy concerns can be summarized as follows:

– Ensuring secure access to the patients’ health records
– Access from unauthorized users to any medical device or health system
– Ransomware attacks on hospitals/healthcare organizations
– Attacks on medical devices and IMDs
– Misuse of medical devices and IMDs
– Unsecure data transmission between medical devices
– Attacks due to security flaws/bugs in devices caused by not constantly updating/patching
– The confidentiality and integrity of patient data
– Stealing patient data including health, personal, and insurance data
– Data breaches/data leakage

Finally, the security and privacy concerns in an IoT-based healthcare system are described with a
motivating scenario as follows: Alice is a cancer patient. She has high blood pressure and chronic heart
conditions. Now, she also suffers from Covid-19. Bob is Alice’s family doctor and with his advice,
Alice is wearing a wireless body sensor while she is staying at home. The sensor collects Alice’s
medical data such as her heart rate and blood pressure, and sends these data to Bob in order to remotely
monitor her health, to detect any unwanted medical condition and to send a medical assistance to Alice’s
current location. Now, during her Covid-19 treatment she also shares her medical data with Eve who
is a doctor in a public healthcare provider. Bob can access Alice’s all medical data and add remarks to
Alice’s medical results. However, Eve has access permission to a restricted medical data of Alice’s and
can only add remarks to her medical results that are related with her Covid-19 condition. In the case of
a health condition during her Covid-19 period, the smart device alerts Bob and Eve by sending Alice’s
health data. Then an ambulance will be dispatched to help her.

As seen in this scenario, unauthorized access and data leakage should be prevented. Therefore, it
is important to define access control policies by including the additional concepts such as user roles,
purposes, and time. Also, Alice can add additional people such as family members or friends to be
notified in case of an emergency. However, in such a case only authorized people should monitor her
medical data. In addition, malicious attempts to alter her medical data or to access wireless body sensor
network should be detected.

5.4 Semantic web based solutions for security and privacy
The semantic web is known as Web 3.0. Most of the web’s content is designed for humans to read,
not for computers to manipulate it meaningfully [16]. The semantic Web enables to store knowledge



102 Chapter 5 The security and privacy aspects in SW enabled IoT-based HIS

about the content in a structured form and allows machine-interpretable representation of concepts by
representing information more meaningfully [61]. Therefore, the semantic web enables the content to
be understandable by both humans and machines. Semantic web allows to simplify the distribution,
sharing, and exploitation of information and knowledge across multiple sources [62]. For this purpose,
ontologies are used to support interoperability between systems and a common understanding of a
knowledge domain. An ontology is defined as an explicit specification of a conceptualization [63].
Ontology enables the representation of the formal specification of concepts and relationships between
these concepts from a domain of interest. Thus, information is given in a well-defined meaning and
more effectively processed, shared, integrated, reused, and discovered.

Digital security and privacy protection have an essential importance in today’s information technol-
ogy environment. As information and communication technologies are progressing very fast, devices
collect, process, and share all kinds of information. Therefore, it is important to meet the security and
privacy requirements of digital assets. For this purpose, it is a necessity to authorize data access and
define restrictions for access rights. Semantic web describes information in well-defined semantics, en-
ables machine-to-machine interaction, provides interoperability, and automation. Thus, a semantically
enriched process enables to regulate automatic access to sensitive information [64]. As stated in [62],
semantic web technologies contribute to intelligent and flexible handling of privacy and security related
issues by supporting information integration. Hence, several semantic web-based studies to handle se-
curity and privacy issues are presented in the literature. Within this scope, a review on security, privacy,
and policy related challenges associated with semantic web technologies is presented in [62]. The exist-
ing studies propose various solutions for access control, policy management, trust management, cyber
threats, consent management, and privacy concerns.

Semantic web based policy management allows to define rules for accessing a resource in order to
provide users to interpret and comply with these rules. For this purpose, an Ontology Based Access
Control (OBAC) to provide fine-grained policies is presented in [65,66]. A policy language is proposed
in [67] to control access to resources. In [64], the main semantic web policy languages and the usage of
ontologies in policy specification, conflict detection, and validation are explained in detail. An access
control model that supports varying protection granularity levels and content-based access control is
proposed in [68]. Mavroeidis and Bromander [69] proposes a cyber threat intelligence ontology to
share threat data and threat information in an effective way. An ontology based personalized solution
to preserve privacy is proposed in [28]. Moreover, ontology-based provenance management approach
is presented to detect data breaches and preserve privacy [70,61]. Furthermore, several semantic web-
based solutions focus on consent management [71–75], privacy standards, and regulations such as EU’s
General Data Protection Regulation [76] (GDPR) [77–80], and the Health Insurance Portability and
Accountability Act [81] (HIPAA) [82,83] to enhance privacy preservation. Similarly, an ontology based
privacy preservation approach is proposed in [84]. Besides, there are studies that focus on the privacy
aspects of linked data. An investigation on the privacy challenges when personal data is published
within linked data environments is presented in [85]. In [86], the potential privacy risks on linked data
are introduced and discussed. The study presented in [87] proposes a personal linked data view based
approach that enables users to possess and manage their data privacy in order to be aware of their
personal data privacy. An automatic framework is presented in [88] to generate and publish the RDF
linked data representation of cybersecurity concepts.

Consequently, semantic web enables to create accurate models for security and privacy related is-
sues, allows meaningful interpretation of data to manage privacy, and ensures machine-readable and
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machine-processable representation of policies for the automation of tasks related to policy manage-
ment [62]. As the semantic web brings more meaning and structure, it has the profound potential to
provide effective and efficient solutions for security and privacy.

5.5 Semantic web based solutions for the security and privacy aspects in
the IoT ecosystem

The distributed and heterogeneous characteristics of the IoT ecosystem lead to the interoperability
challenge. The integration of semantic web and IoT enables to achieve wide-scale interoperability and
move toward horizontal open systems and platforms that can support multiple applications [89]. Also,
information that is semantically rich and easily accessible is integrated into the physical world, thus
smart objects and digital entities are connected [90]. Hence, semantic web-based IoT solutions offer
benefits in standardization, thing discovery, and search [91]. Further, building semantic web-based IoT
solutions ensures a common description and understanding of the meaning of data. Thus, semantic
web-based solutions enable analyzing and sharing threat data and threat information in an effective
way by providing standard formats and protocols for sharing threat data, and a common understanding
of the relevant concepts and terminology [69].

Semantic web-based solutions provide a well-defined meaning for the related domain information,
improve the ability to exchange and use information and information processing in the IoT ecosystem.
Also, semantic web represents information in a machine-understandable and machine-processable for-
mat that can be automatically treatable by algorithms. Therefore, it supports to design interoperable
IoT applications. In IoT, heterogeneity, diversity, and dynamicity of devices, data and networks are the
biggest challenges [92]. These challenges are achieved by semantic web technologies by defining the
relationship between data, providing modular modeling and reusability, supporting interoperability, and
inferring new knowledge. In the scope of security and privacy aspects of the IoT ecosystem, ontologies
are used to facilitate a formalized and unified description to resolve the heterogeneity, scalability, flexi-
bility, and interoperability challenges in the IoT security domain [92]. Ontologies also provide the data
quality, robustness, precision, and redundancy requirements of a secure system [93].

In the following subsections, semantic web-based solutions to security and privacy issues in the IoT
ecosystem are examined, respectively.

5.5.1 Security oriented solutions
The heterogeneous connectedness of the IoT ecosystem brings several security challenges. The growth
of security threats has become more significant with the recent developments in wireless sensor net-
works, the growth of smart devices, and the expansion of IoT technologies. IoT devices are limited in
compute, storage, and network capacity. Therefore, most of IoT devices are vulnerable to attacks and
easy to hack and compromise.

IoT has several security issues that cause a variety of damage and threaten individuals’ lives. Mishra
et al. [92] explores the main security and privacy needs of IoT, examines semantic web technologies
within IoT systems for maintaining a secure Semantic Web of Things (SWoT) and discusses security
challenges such as confidentiality, availability, integrity, trustworthiness, authentication, and authoriza-
tion. A reference ontology named IoTSec is developed in [94] to unify concepts and define relationships
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among the main basic components of risk analysis of information security. IoTSec is a quantitative se-
curity assessment for IoT environments to identify risks for the valuable assets of the organizations. An
ontology-based cyber security framework based on IoTSec is proposed in [95]. For this purpose, the
IoTSec ontology is extended for the prevention measures against vulnerabilities and known threats. The
proposed ontology-based framework aims to run time monitoring and actuation tools to automatically
detect threats to the IoT network and dynamically propose or implement suitable protection services.
Another research-based on IoTSec ontology is IoTSecEv ontology [96]. The IoTSecEv ontology is a
conceptual formalization of the observer’s context on security preferences and links this knowledge to
concepts of the IoTSec ontology. Similarly, an ontology-based framework is developed for IoT-based
smart homes in [97]. The presented ontology-based security framework uses a security ontology to
address data representation, knowledge, and application heterogeneity to support security and privacy
preservation in the process of interactions. The ontology-based approach allows to solve the hetero-
geneity issues and to define security policies for both service provider and consumer.

The functional architecture of the IoT framework that incorporates secure access provision is pre-
sented in [17]. The presented framework is implemented with semantic web technologies. Thus, the
interoperability of security is addressed through an ontology-based approach. The proposed architec-
ture offers a solution for controlling secure access to services, devices, and information by creating
ontology-based access control policies. Also, the interoperability of security is ensured by using se-
mantic web technologies. The secure semantic interoperability for IoT is also studied in [98]. For this
purpose, a semantic mediator component across the various IoT layers is presented to provide the re-
quired common representation and meaning of data. The main concern of the study is to control the
inference operation of the reasoning components that collect, correlate, and process data that may result
with the semantic attacks that exploit network or web level vulnerabilities. An IoT security ontology
for smart home energy management system in smart grids to analyze and infer security issues for
smart home is developed in [99]. The ontology handles threats against smart home energy manage-
ment system such as tampering, DoS, spoofing, repudiation, disclosure of information, and elevation of
privilege. The ontology also includes countermeasure concepts to mitigate threats such as encryption,
firewall, checksum, hash, key management, credentials, and trust management.

An ontology-based security recommendation system is developed in [100]. The developed tool
allows users to make well-educated decisions for taking effective security measures. The presented
system utilizes semantically enriched ontology to model the IoMT components, security issues, and
measures. The defined context-aware rules enable reasoning to build a recommendation system.

5.5.2 Privacy oriented solutions
The IoT provides the opportunity to collect diverse data, process, and analyze data. Privacy becomes
a critical issue as the scale of the collected data is increasing day by day. In IoT, privacy is more than
anonymity as profiling and data mining within any IoT scenario can form potential harm to individuals’
privacy due to the automatic process of data collection, data storage, data share, and data analysis [101].
Also, the privacy mechanisms must ensure both data protection and confidentiality of personal data.

The basic privacy requirements in IoT are presented and a privacy ontology named IoT-Priv that
matches these requirements is developed in [102]. The proposed ontology is an integrated solution for
the generic security and privacy issues in IoT. Also, IoT-Priv handles privacy concepts regardless of
the application domain. Therefore, IoT-Priv is a domainless privacy ontology that can be extended by
applications due to their purposes.
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A semantic web-based framework called SeCoMan is developed in [103]. The proposed framework
is a solution for developing context-aware smart applications to preserve user privacy in the IoT. For this
purpose, authorization policies are managed to control who can access to a given location by allowing
users to share their location to the right users, at the right granularity, at the right place, and at the right
time. The SeCoMan uses the semantic web to model the description of things, reason over data to infer
new knowledge, and define context-aware policies.

The knowledge that is derived from the collected, stored, shared, and processed personal data in-
volves potential privacy risks. Therefore, a privacy ontology named LIoPY is proposed in [104] to
incorporate privacy legislation into privacy policies while considering several privacy requirements.
The main concern of this study is preserving privacy by defining the basic concepts for the privacy
requirements. The proposed ontology-based privacy-preserving in the IoT approach focuses on both
controlling who can access the data collected by smart devices and addressing the privacy preservation
of the whole data life cycle. The data life cycle is the whole process of collecting, storing, processing,
and transmitting the collected data by smart devices. The LloPY ontology is also used in a semantic
web-based privacy-preserving API to generate a common privacy policy that reflects the user’s privacy
choices [105].

An ontology-based privacy-aware virtual sensor model that enforces privacy policy in IoT sensing is
proposed in [106]. The proposed model optimizes the use of privacy-preserving techniques by applying
the related techniques according to the virtual sensor inference intentions while preventing malicious
virtual sensors to execute or access to raw sensor data. The presented study focuses on privacy preserva-
tion for IoT sensing and enforces a privacy-by-policy strategy to design privacy-sensitive IoT systems.
The study uses an ontology-based approach to provide a flexible and powerful classification for per-
sonal information.

Finally, an IoT ontology is built in [107] by using General Data Protection Regulation (GDPR) to
enhance privacy. The GDPR [76] is the European Union (EU) directive for the protection of natural
persons with regard to the processing of personal data. The proposed ontology does not cover all the
GDPR requirements related to the full data cycle, which includes data gathering, sharing, processing,
retention, deletion, etc. The presented study focuses on the data gathering and sharing aspects of per-
sonal data.

5.6 Challenges and future directions for the security and privacy
concerns in IoT-based healthcare systems

In smart healthcare systems, patient monitoring and administration are controlled and managed au-
tomatically without any direct human involvement [108]. This allows automatic identification and
tracking of patients, real-time monitoring of patient’s physiological parameters, early diagnosis of dis-
eases, effective treatment, improving the quality of care for patients while reducing healthcare costs.
The traditional healthcare systems were a closed environment within a secure network infrastructure.
However, smart healthcare systems operate in an open context [108]. For example, a wearable device
continuously collects data about a patient’s vital signs such as heart rate, breathing, temperature, etc.
This collected data is periodically transferred to a database and viewed by the patient’s doctor to be
used for the patient’s diagnosis and treatment.
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IoT wearables and smart devices offer a promising solution for objective, reliable, continuous and
remote monitoring, assessment and support through ambient assisted living [109]. Thus, patients can be
efficiently monitored in real-time and remotely, patient’s movements and locations are tracked, clinical
decision-making is supported, effective treatments, and emergency services are provided to patients
especially elderly patients, Alzheimer’s and dementia patients.

The traditional healthcare system’s scale and quality of health and medical resources and services
are insufficient in meeting personal medical needs [110]. Besides, as healthcare data has a significant
value, attackers are highly motivated to carry out attacks for financial and political gains. There are
increasing concerns relating to the security of healthcare data and devices. Therefore, low-level security
and privacy countermeasures are unacceptable to preserve patient privacy, secure healthcare operations,
and protect people’s health. Moreover, there is a huge amount of data in the healthcare domain that
needs to be managed, queried, and reused for patient-specific needs. For this purpose, these data should
be shared between systems and services. Semantic web technology enables to build a model of a specific
domain and provides to share a common understanding in order to improve the communication between
people and systems. An ontology which is the core of the semantic web technology allows to define a
semantically-rich knowledge base for the information management systems and integrate information
coming from different sources. Therefore, semantic web technologies allow to describe the domain
and device data, define rules to maintain correct inference results [111]. Thus, the health data collected
from any medical device or clinic can be reused and shared not only at the point where it was produced
but also by other authorized services, devices, and people. Thus, interoperability between information
systems can be achieved. For this purpose, ontologies are used as information bases to build common
frameworks in health information systems. Therefore, the use of semantic web-based IoT solutions
is recognized as a successful approach for the healthcare domain. Semantic web-enabled IoT-based
healthcare systems offer to find valuable information, to share information to ensure the right treatment,
to analyze it, to transform it to knowledge in order to enable better decision-making, and to ensure the
accuracy of data.

IoT-based healthcare solutions connect medical devices and sensors to gather health data in or-
der to provide smart and connected healthcare. Patients, families, physicians, hospitals, and insurance
companies benefit from this connectivity. For example, doctors monitor and track the status of their
patients anytime and anywhere, the decision-making process is facilitated, a better-informed treatment
is provided to patients. The sensitive data that is gathered by IoT devices cause security problems. In
the healthcare domain, it is important to ensure patient privacy as well as collecting, storing, analyzing,
and transferring health data accurately and securely. Semantic web also offers solutions for the security
and privacy concerns introduced by the use of IoT in healthcare systems.

A semantic model for the healthcare domain with security layers interconnected with IoT devices
is proposed in [112]. The proposed secure semantic smart model performs the monitoring of end-users
and maintains security issues such as authentication, integrity, and confidentiality. The study summa-
rizes threats to a healthcare system as follows: spoofing device to the system, modifying a device with
corrupted data, breaking the smart device control system, injecting the incorrect information to access
the system, stealing the confidential records of patients from the storage, leaking the sensitive data,
inspecting the communication channel between the server and smart devices. The presented Secure-
Semantic-Smart HealthCare (S3HC) framework addresses these challenges with a secure semantic web
of things model that represents the IoT resources and data meaningfully and securely.
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A decentralized trust model named Blockchain Decentralized Interoperable Trust framework (DIT)
for Healthcare-based Internet of Things (IoHT) is presented in [113]. The DIT framework offers a solu-
tion for the following challenges in IoHT: preserving sensitive data of patients, ensuring confidentiality
and integrity of patients’ data against insider attacks, enhancing encryption and IoHT access control
methods, support privacy preservation while circumventing pervasive tracking and profiling. The pro-
posed blockchain-based framework supports semantic annotations for health edge layers in IoHT and
secures the different stages of data-related processes by using cryptographic algorithms. As a result
of this study, the proposed semantic web-based model outperforms interoperability, confidentiality, in-
tegrity, availability, mutual authentication, trustworthiness, and privacy.

A semantic web-based privacy framework is presented in [114] to allow the patient to determine
the privacy risks incurred when the elements of the personal data are shared with a data consumer. The
main focus of the study is privacy concerns and risks that refer to the harmful use of personal data or
the harmful effect of personal data disclosure. The proposed framework allows a patient to share her
personal data with a data consumer hidden behind a smart service from the IoT ecosystem. The related
privacy framework determines the privacy risks entailed by this data sharing, compares these risks to
the benefits to be received, and allows the patient to decide on specifying the data items that can be
released along with their precision. The proposed solution offers pragmatic data sharing to patients.

A decentralized ontology-based system architecture that meets a healthcare organization’s privacy
needs and its enterprise security policy concerns by considering IoT trends in the healthcare domain is
presented in [93]. For this purpose, a HealthCare Security and Privacy (HCSP) ontology is developed
to ensure privacy. The proposed system assesses information security standards and policy compliance
for data provided from connected medical devices to satisfy institutional and regulatory guidelines.

A privacy-preservation ontology named HOPPy (Holistic Ontology for Privacy-Preserving) is pro-
posed to model the smart healthcare domain in [115]. The HOPPy defines a common privacy vocabulary
to meet the privacy requirements. The presented privacy policy ontology is in accordance with patients’
preferences, privacy laws, and regulations.

Consequently, security and privacy are fundamental concerns in smart healthcare. Therefore, the
security and privacy issues must be addressed for each layer of the IoT architecture. However, in the
literature, researches that propose semantic web-enabled solutions on the related security and privacy
problems for the IoT-based healthcare systems are limited. Thus, the security and privacy issues in
semantic web-enabled IoT-based healthcare information systems bring many challenges that need to
be addressed in the future.

One of the challenges is ensuring the heightened access control. For this purpose, the privacy of
the shared data must be preserved by preventing unauthorized access to data. The access of resources
should be monitored and the unauthorized flow of information must be prevented. For example, medical
wearable devices sense, collect, and share individuals’ sensitive health data. Individuals must be aware
of this shared data and have control over their sensitive data. Thus, unauthorized access should be pre-
vented and fine-grained access control mechanisms need to be maintained. Semantic web technologies
enable to set access restrictions at the right level of granularity based on the actual data content and to
understand what pieces of information need to be treated carefully to protect privacy [116]. The access
control mechanisms must also include the time and location restrictions due to the heterogeneous and
dynamic structure of the IoT ecosystem. For example, while an individual allows sharing her wearable
device data in weekdays, she prohibits sharing her data at weekends. Besides, conflict detection is an
important issue that needs to be considered while working with access control policies.



108 Chapter 5 The security and privacy aspects in SW enabled IoT-based HIS

Auditing of IoT medical devices must be enabled and detailed logs of device activities and access
events must be kept. Auditing is a substantial requirement to detect anomalous, malicious, and uninten-
tional activities. Also, using multifactor authentication increases security level by requiring more than
one form of authentication such as biometric information that is specific to the patient. Thus, accessing
medical devices or systems becomes more challenging for attackers.

The real spreading of IoT services requires customized security and privacy levels [15]. Therefore,
another challenge is maintaining personalized security according to the privacy needs of patients. Pri-
vacy preservation in the IoT should be investigated and addressed from the perspective that privileges
the interests of data owners [106]. Different IoT systems require distinct security mechanisms to avoid
intrusions from the physical and cyber world [95]. Also, every individual has different privacy require-
ments when sharing her personal data. Personalized privacy protection must be accomplished by using
the individual’s personal privacy level choice. Moreover, customization is also an important issue and
should be guaranteed.

Shared data is beneficial for researchers, but it may cause a privacy problem for individuals whose
data has been published [84]. Thus, providing the right balance between data privacy and the need for
patients and providers to interact with health data is also an important challenge while preserving pri-
vacy. Reliable and well-balanced mechanisms should be maintained for the disclosure of data without
limiting the overall healthcare system’s flexibility. It is critical to consider the privacy requirement of
each individual independently to prevent excessive data distortion while ensuring individual privacy
[117]. Further, the data that is stored in medical devices must be encrypted against data breaches. Also,
data obfuscation techniques must be used to hide sensitive data of IoT medical devices.

Besides these challenges, communication between IoT devices must also be secured. The security
risks associated with things-to-things communications in addition to risks relating to things-to-person
communications need to be considered [101]. Also, reliable access to medical data is significant to
improve the treatment process. For this purpose, end-to-end security solutions to protect communication
among smart medical devices and exchange data between both ends of the communication should be
developed. The end-to-end security must provide the data exchange without being read, eavesdropped,
intercepted, modified, or tampered [101]. Also, auditing, log management, and patch management must
be enabled. Moreover, the written code of end-points must be inspected to ensure that it is protected
from reverse engineering and vulnerabilities against malwares [100].

In semantic web-based approaches, the fundamental ontological concepts must address 4W1H
methodology which consists of 4W (What, When, Where, Who) and 1H (How) [118]. Most of the
ontology-based approaches in IoT address What, Where, and When related competency questions, but
they fail to address the Who aspect [107]. Thus, semantic web-based solutions to ensure security and
privacy must consider the 4W1H methodology.

Finally, the legislation aspect of privacy must also be taken into consideration while proposing
privacy-related solutions. As addressing only access control at processing time is not enough to pre-
serve privacy, the privacy preservation mechanisms must fulfill regulations and privacy standards that
define the privacy requirements. Thus, considering patients’ consent and covering the regulations such
as GDPR are key requirements while addressing the privacy issues. Patients have the right to know
who collects, stores, and accesses their data. The term of consent is defined as restricting the disclo-
sure of sensitive information according to the wishes of the patient [73]. Therefore, patient-oriented
consent management can be used to guarantee patient privacy [119]. Also, ontology-based consent
management [71,73,72,119] and ontology-based provenance solutions [61,120,70] should be investi-
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FIGURE 5.5

The structure of a privacy-preserving provenance ontology.

gated for privacy preservation in IoT-based healthcare systems. The structure of a provenance ontology
that detects privacy violations in a healthcare system is presented in Fig. 5.5 [120]. As the proposed
model is domain-independent, it can be used in various situations in the healthcare domain of the IoT
ecosystem.

It is important to note that security is not just an add-on to existing systems, but an integral part of
systems [121]. The security and privacy needs must be appropriately applied to maintain the reliabil-
ity of systems and the privacy of users. IoT security is concerned with any “thing” that is connected.
Therefore, the scope of IoT security should be end-to-end to support the device from the very begin-
ning. The security and privacy challenges within IoT-based healthcare systems are primary objectives.
Attacks and data breaches may threaten human life, cause patients to lose their trust, or result in loss
of functioning of critical equipment within hospitals. Therefore, vulnerabilities and risks against these
systems must be carefully studied, threat modeling must be developed, and all the relevant issues must
be determined in order to develop sufficient security and privacy measures. In this scope, semantic-web
enabled solutions for the related issues improve the efficiency and effectiveness of ensuring security
and preserving privacy. Hence, the semantic web allows users to operate at abstraction levels above
the technical details of format and integration, also enables autonomous and semiautonomous agents
to assist in collecting, processing, and reasoning on sensor data [122]. Additionally, ontologies that
play a major part in interoperability support the automatic establishment of security metrics based
on explicit and reasoning information, improve the efficiency and effectiveness in security opera-
tions and help analysts to extract relevant pieces of information to characterize vulnerabilities and
threats [95].
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5.7 Conclusions
The IoT is a fast-growing complex network of connected sensors and devices that reaches several ap-
plication domains ranging from smart homes, smart cities, smart agriculture to Industry 4.0. This rapid
development of IoT offers growing opportunities for the healthcare sector. The main objective of the
IoT-based healthcare systems is to provide health information to authorized parties at anytime and
anywhere. As semantic web technologies are used to improve the quality of the healthcare domain
and to provide interoperability between the healthcare information systems, integrating semantic web
technologies into the IoT-based health information systems provides an effective and efficient solution
by promoting the interoperability among resources, data providers, and consumers. However, the in-
creasing connectedness and the ongoing digitization process in many fields convey various threats. In
the healthcare domain, using reliable and timely data is critical for decision-makers at all levels of the
health system. Meanwhile, maintaining the security and privacy of healthcare data is a major challeng-
ing task due to the current technological developments and the growing potential of the IoT ecosystem.
Therefore, security vulnerabilities that present in the IoT-based healthcare systems should be addressed
and a sufficient level of protection must be achieved. Besides, an effective IoT-based healthcare system
must not compromise the fundamental security elements and privacy requirements.

Ensuring the security and privacy of the IoT-based health information systems is an important issue
that requires further investigations and developments. The current researches in the literature that focus
on the security and privacy-related issues for the semantic web-enabled IoT-based healthcare systems
are limited. The security and privacy challenges in IoT-based healthcare systems are severe. Under the
scope of the rise of IoT, the potential threats should be clearly understood and the safety of this digital
future should be maintained. In this context, semantic web-based solutions to the security and privacy
challenges in IoT-based healthcare systems are still open for future research.
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6.1 Introduction
The era of the Internet of Things (IoT), with a huge number of IoT devices already in everyone’s lives,
is bringing about major changes in several important domains such as Smart Cities, e-health, security,
intelligent transportation, infrastructure management, etc. One of the most significant aspects of the
IoT is the interconnection of things, which provides interconnected systems of different services and
applications. Huge amounts of data are generated every day, the knowledge of which is extremely
valuable. The most advanced IoT systems try to assess a situation based on the knowledge expressed
by the data in order to enable services to make intelligent decisions [1].

However, one of the most important challenges of existing IoT technologies is that of interoperabil-
ity as data is based on predetermined formats without following vocabularies to describe interoperable
data [2]. The basic structure of IoT is machine-to-machine communication, as IoT is based on a wide
variety of different heterogeneous systems and technologies and there is no standardized language for
data representation and processing. For example, sensor measurements are required to be distributed
and analyzed by other devices or sensors and not to be usable by humans for more sophisticated pro-
cessing. This has contributed to a large number of IoT systems that are incompatible. Thus, it is very
difficult to extract knowledge from the huge number of data provided by the IoT applications every sec-
ond. These measurements should follow standards so that the data can be transferred from one machine
to another.

The IoT revolution has made a considerable contribution also to the expansion and empowering
of e-healthcare services [3,4]. In fact, smart remote and mobile healthcare applications are making
an enormous shift in the health and social care workforce efficiency as well as patients’ wellbeing,
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creating several tools for collecting and managing data effectively and providing several solutions to
e-healthcare challenges: data, information, and knowledge can be used in real-time to support effective
integration of prevention, treatment, and recovery services across healthcare services. For example,
blood pressure, body temperature, heartbeat, respiratory rate, oxygen saturation, blood glucose level,
wrist pulse signal, galvanic skin response, magnetoencephalogram, electrooculography, electromyo-
gram, electrocardiogram, and electroencephalogram are health-related parameters that can be collected
in huge quantities by medical connected objects (MCOs) to realize smart healthcare applications. These
MCOs are heterogeneous in terms of deployment contexts, computing capabilities, and communication
protocols, as they are designed by different manufacturers. Accordingly, the exchanged information is
heterogeneous in formats and units and does not have the same coding format. In this context, ensur-
ing semantic interoperability becomes difficult [5]. The knowledge era allows to improve e-healthcare
systems through the management of the knowledge base and the automatic support of decisions. In this
perspective, e-healthcare applications are now exchanging not only an enormous volume of data but
also an important quantity of information and a large knowledge base.

Once again, interoperability is the key: beyond the issues related to different international healthcare
systems and organizations, a substantial lack of cohesive data models in Electronic Health Records
(HERs) and poor interoperability highlight a weakness in e-health infrastructures [6], made even more
severe if we consider that these data can be of essential importance in daily activities and research, e.g.,
on the effectiveness of drugs and therapeutic strategies. Thus, semantic interoperability is becoming a
crucial feature and it is hard to imagine a healthcare or clinical system architecture without it [7,8]. The
MCO ontologies appear a valuable resource to improve the data contained in the information model and
to support service management operations [9]. Knowledge graph (KG) models are becoming commonly
used models in healthcare systems providing a flexible approach to integrate data and knowledge and
assisting in inferring meaning [10]. Often KG systems use reasoning mechanisms in order to ensure
active and assisted monitors of patients [11].

The main goal of this work is to propose a KG-based context-aware approach for the Internet of
MCOs that consists in:

• defining a semantic representation of MCOs with their data (characteristics, capabilities, deployment
contexts, measurements, etc.) and contexts to resolve the semantic heterogeneity problem;

• integrating knowledge about the observed patients such as symptoms, treatments, events, risks;
• integrating high-value medical knowledge;
• ensuring the good functioning of the employed MCOs to guarantee sustainable and effective patient

monitoring;
• facilitating the interaction between doctors and users through the development of a semantic-based

patient monitoring system.

The chapter is organized as follows. First, Section 6.2 describes different relevant data that should be
considered to model knowledge in a knowledge-based system for e-health and highlights main require-
ments. Then, to provide a solid foundation, Section 6.3 introduces the most interesting and high-value
knowledge representations in the e-health domain. Next, Section 6.4 describes KGs, a symbolic ab-
straction used for encoding a knowledge base, a collection of statements having the form of interlinked
subject–predicate–object triples. Section 6.5 proposes the KG framework using examples to highlight
the different data collected in the integrated domain model. Finally, Section 6.6 closes the discussion
and points out future directions.
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6.2 Knowledge-based system in health
An e-healthcare system has to consider and manage information from different sources and contexts:
data collected in clinical environments, data collected in daily living environments and high-value do-
main knowledge. Data collected from the actual use of digital health systems represent a significant
potential for patients, epidemiology, and health services. They are highly heterogeneous and generally
implemented with a focus on workflow and documentation, not on data quality or consistency, and
often do not offer a patient-centered overall picture. Electronic patient records are rich and complex
and contain hundreds of attributes: data on a patient’s medical history, demographic data, diagnoses,
medications, allergies, radiological images, laboratory test results, etc. They are characterized by am-
biguous semantics and quality standards resulting from different collection processes between sites.
These data are collected in a clinical environment, e.g., laboratories and hospitals. Data collected in
daily living environments are generally unstructured, often obtained from unlabeled information de-
rived from health conversations (e.g., discharge letters, pathology reports, etc.) and dynamic data from
wearables and MCOs (e.g., data streams like glycemic index, food intake, and sports activities per-
formed) that continuously transmit information about a person’s fitness and health using mobile health
technologies [12,13]. Thus, integration between hospital and proximity care is made explicit to include
telemedicine. HL7’s Fast Healthcare Interoperability Resources (FHIR) is emerging as a popular stan-
dard for health data exchange and the development of new applications. It supports technologies such
as RDF and SPARQL that can provide effective solutions to enable interoperability and a common
language between healthcare systems and can lead to the disambiguation of information through the
adoption of various available terminologies and ontologies and forms of reasoning about healthcare
data. The representation of FHIR resources is mostly through JSON objects, while the representation
of ontologies is in RDF serializations. Thus, RDF graphs are suitable to combine information about
patients, observations, and corresponding drugs with the extension of knowledge about drugs and rela-
tionships between objects. Furthermore, specific medical knowledge is increasingly standardized and
freely available, also in a machine-readable format. This high-value knowledge (in categories such as
epidemiology, symptomatology, diagnosis, treatment, medication, nutrition) should be carefully con-
sidered and linked to map information onto an integrated domain model by providing support for logical
reasoning. Section 6.3 describes the most up-to-date and high-value knowledge representations in the
e-health domain. Knowledge modeling is an effective way to organize and utilize the three described
types of dispersed knowledge, and it is also an important step in constructing knowledge-based applica-
tions. The ultimate goal of knowledge modeling is to organize the scattered knowledge from different
data sources to form a unified knowledge model which computers can process for knowledge manage-
ment or other applications. In this regard, the main goal of this work is to propose a knowledge-based
system as a context-aware approach for the Internet of MCOs that consists in:

• modeling a comprehensive data- and process-oriented conceptual approach for knowledge represen-
tation;

• proposing a dynamic data interchange and processing system able to:
• receive and execute contextual queries and focuses,
• produce and consume KGs,
• support automatic feeding and contextual querying.
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The framework should enable the transition from a document model to a data- and process-oriented
one, as a bridge between knowledge that avoids new implementations at each integration and/or mod-
ification and allows the integration of new ontologies, data lakes, vocabularies, data sets, etc. It should
be not a simple set of document repositories, but a system for the interchange and processing of data
and services for the citizen and for the health workers involved in the care process. Considering that
every medical information has a context, the result of the queries should be a view for the specific use
case that changes according to the medical needs. These views are essential to filter the huge amount
of information in the different datastores. For example, there is more information to consider if the
medical query is about the long-term effects of taking a drug; conversely, if an application is needed to
alert the patient that he/she is taking drugs to lower his/her heart rate when his heart rate drops below
a certain threshold, only fewer observations are needed (too many hours have passed since taking the
drug, the heart rate has increased above a certain threshold).

The chapter highlights the power of using KG technologies, to provide the formal tools and lan-
guages for knowledge representation and reasoning about health data, in order to implement the
described approach promoting semantic interoperability and comparing real-world clinical practice
with accepted best practices and guidelines. In particular, the chapter highlights the use of KGs consid-
ering data collected in daily living environments and specific medical knowledge, exposing them in a
structured format and forming a context-aware resource graph.

6.3 Context modeling using knowledge graphs
Smart ontology-based systems for e-health will likely rely on diverse sources of ontology knowledge
both implicitly and explicitly [14,15]. The adoption of semantic technologies and logical formalisms for
explaining e-health systems is in line with the ‘breaking the black box’ trend, who foresees the return of
rule-based approaches in combination with description logic (DL) techniques to obtain newly transpar-
ent models [16]. These explainable knowledge-enabled systems include a domain knowledge represen-
tation in the application domain, have mechanisms to incorporate patient context, are interpretable, and
host explanation structures that generate user-understandable, context-aware, and provenance-enabled
explanations of the functioning of the e-health system and the knowledge used [17]. The most interest-
ing and high-value knowledge representations in the e-health domain are described below.

The Disease Ontology is a rich knowledge base of human diseases managed by the Institute for
Genome Sciences at the University of Maryland School of Medicine initially developed in 2003. It aims
to provide the biomedical community with consistent, reusable, and sustainable descriptions of human
disease terms and phenotypic characteristics and disease concepts from the related medical vocabulary.
It semantically integrates other vocabularies through cross-mapping, e.g., Disease Ontology terms in
MeSH, ICD, NCI’s thesaurus, SNOMED, and OMIM.

Orphanet is considered the largest existing database for rare diseases. Currently, it has data for more
than 7000 rare diseases. Each disease is given a unique and stable identifier, the ORPHAcode. The
Orphanet rare disease nomenclature comprises heterogeneous entities organized in descending order:
disease groups, diseases, subtypes. A disease included in the database may represent a disorder, a
malformative syndrome, a clinical syndrome, a morphological or biological abnormality, or a particular
clinical situation (during the course of a disease). Disorders are organized into groups and subdivided
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into clinical, etiological, or histopathological subtypes. It also offers direct information on specialized
centers, diagnostic tests, patient associations, research projects, and registries and biobanks.

In 2013 Orphanet and the European Bioinformatics Institute (EMBL-EBI) created ORDO. It is an
OWL ontology derived directly from Orphanet and updated twice a year with periodic extractions. It
plays a central role in many rare disease projects (similar to DBpedia in the LOD graph). It models rare
diseases epidemiological data (age of onset, prevalence, mode of inheritance) and relationships between
the disease and its genetic cause (if known). It provides references to the International Classification
of Diseases 10 (ICD-10), SNOMEDCT, Medical Subject Headings (MeSH), Medical Dictionary for
Regulatory Activities (MedDRA), Online Mendelian Inheritance in Man (OMIM) and Universal Pro-
tein Resource (UniProt), Ensembl, Reactome, and Genatlas. ORDO 2.9 (the latest version at the time
of writing) consists of 14,559 classes and 205,428 annotation assertion axioms.

While ORDO is mainly used to name diseases (e.g., “idiopathic achalasia”), HPO is used to de-
scribe the clinical phenotype observed in a patient (e.g., “muscle weakness”). The combination of HPO
together with Orphanet has always been considered a promising resource for the automated classifica-
tion of rare diseases. The developers of ORDO and HPO have recently been working on the integration
of both ontologies, annotating Orphanet phenome types with appropriate HPO terms. The result of this
interoperability effort is called the HPO ORDO Ontological Module (HOOM) and its first version was
released in 2018. The computable descriptions of human disease using HPO phenotypic profiles have
become a key element in several algorithms being used to support genomic discovery and diagnostics.

Founded in 2007 by nine countries, SNOMED International is a nonprofit organization of 40 mem-
ber countries, including 22 in Europe, which owns and maintains SNOMED CT, the world’s most
comprehensive clinical terminology. With SNOMED CT it is possible to record medical data more
accurately, to exchange patient data both within the healthcare team and with patients, both locally
and across borders. SNOMED CT can also be used in healthcare data and analytics platforms, clin-
ical research, applied research, and other research activities to improve healthcare. It represents the
world’s most comprehensive clinical terminology for electronic health data exchange with over 350,000
concepts and clinical findings such as signs and symptoms and tens of thousands of surgical, therapeu-
tic, and diagnostic procedures. SNOMED CT also describes concepts representing body structures,
organisms, substances, pharmaceuticals, physical objects, physical forces, samples, etc. Twenty-two
European countries already participate in SNOMED and others are added regularly (for example, the
German Federal Institute for Drugs and Medical Devices [BfArM] has announced its membership of
SNOMED International for national use of SNOMED CT in 2021). SNOMED International produces
and maintains mappings to other coding systems, classifications, and terminologies. Some mappings
are with GMDN, ICD-10, ICD-O, MedDRA, Orphanet (from 2021). The SNOMED CT to Orphanet
map will provide the content of rare diseases in the international version, also providing a link table
generated by Inserm as part of the SNOMED International–Inserm collaboration agreement. BioPortal
is the world’s most comprehensive repository of biomedical ontologies. In May 2021 it contained nearly
900 ontologies, over 13 million classes, more than 36,000 properties, and over 55 million mappings.

DrugBank Online is a comprehensive, free-access online database containing information on drugs
and drug targets. It is both a bioinformatics and cheminformatics resource, combining detailed drug
data (i.e., chemical, pharmacological, and pharmaceutical) with comprehensive drug target information
(i.e., sequence, structure, and pathway). It is widely used by the pharmaceutical industry, medicinal
chemists, pharmacists, physicians, students, and the general public. In 2021 DrugBank expanded cov-
erage to seven additional regions (Austria, Colombia, Indonesia, Italy, Malaysia, Thailand, and Turkey).
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The latest version of DrugBank online contains approximately 15,000 drug entries, including 2695 ap-
proved small-molecule drugs, 1470 approved biologics (proteins, peptides, vaccines, and allergens),
131 nutraceuticals, and over 6654 experimental (discovery phase) drugs. In addition, 5259 nonredun-
dant (i.e., drug target/enzyme/transporter/carrier) protein sequences are linked to these drug entries.
Each entry contains more than 200 data fields with half of the information dedicated to chemical data
and the other half dedicated to the drug target or protein. It offers connectivity with SNOMED-CT,
MedDRA, ICD-10, etc.

If it is true that one ontology is not sufficient to describe the various information that characterizes
an e-health system, it is also true that there are several competitive ontologies to describe concepts in
the same domain. Thus, there is an overlap problem that does not facilitate the goal of Linked Data.
In fact, while noteworthy efforts have been devoted towards syntactic and semantic interoperability as
described, the way in which individual-level data are collected and coded can be extremely different
even between institutions within the same country. Therefore, data often require a long and costly
preprocessing phase, which consists of mapping variables between coding standards and releases before
being shared with others to contribute to multicenter studies.

6.4 Knowledge graphs
KG represents a collect of interlinked descriptions of entities, where descriptions have a formal structure
and each entity represents part of the description of the entities related to it (forming a network). KGs
combine characteristics of several data management paradigms and can be understood as database
(for structured queries support), graph (for network data structure), and knowledge base (for formal
semantics representation). However, a knowledge graph is not like any other database; it is supposed to
provide new insights, which can be used to infer new things about the world. In recent years, KGs have
become the base of many context-aware modeling systems, representing a structured representation of
facts, consisting of entities, relationships, and semantic descriptions [18]. Entities can be real-world and
abstract concepts, relationships represent the relation between entities, and semantic descriptions refer
to entity and relationship properties with a well-defined meaning. Data about entities, relationships,
and descriptions are represented through the Resource Description Framework (RDF) [19] language.
Because KGs are based on standards for the identification, retrieval, and representation of information
and knowledge, and scattered entities are interconnected by links, it is possible to crawl the entire
data space, fuse data from different sources, and provide expressive query capabilities over aggregated
data, similarly to how a local database is queried today [20]. For this purpose, the Simple Protocol
and RDF Query Language is the standard language for querying, combining, and consuming structured
data in a similar way SQL does this by accessing tables in relational databases. Since Linked Data is
exclusively based on open web standards, data consumers and domain experts can use generic tools to
access, analyze, and visualize data. KG technology means being able to connect different types of data
in meaningful ways. So, a KG is necessarily built on semantics.

KGs have the ability to project information into a multidimensional conceptual space where simi-
larity measures along different dimensions can be used to group together related concepts. This allows
for an integrated solution that not only identifies the meanings of entities, clustering them into a unified
knowledge layer, but also correlates concepts to allow for inference generation and insights. The KG
architecture is based on a layered approach, and each layer provides a set of specific functionalities.
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Semantic layers, on the top of the stack, include ontology languages, rule languages, query languages,
logic, reasoning mechanisms, and trust. Ontologies, as a source of formally defined terms, play an
important role within knowledge-intensive contexts such as the one described in this chapter. Ontolo-
gies can be reused, shared, and integrated across applications, and aim at capturing domain knowledge
in a generic fashion and provide a commonly agreed understanding of the domain [21]. Ontologies
constitute the backbone of KGs expressing concepts and relationships of a given domain and specify
complex constraints on the types of resources and their properties. It can be said that a KG is a way
an ontology could be represented. The real divide between ontology and knowledge graph has nothing
to do with size or semantics, but rather the very nature of the data. KGs are fact-oriented, while on-
tologies are schema-oriented. Unlike KGs, in domain ontologies the focus is not on data (or facts), but
on a highly expressive description (disjointness, cardinality, restrictions) of the concepts, the relations
between them, and useful annotations (synonyms, definitions, comments, design choices, etc.). An on-
tology is metadata/schema, whereas the KG is the data itself. An ontology usually deals with concepts,
not instances of concepts. So, not every RDF graph is a KG.

Rule languages allow writing inference rules in a standard way that can be used for automatic rea-
soning. First-order logic and DL [22] are frequently used to support the reasoning system which can
make inferences and extract new insights based on the resource content relying on one or more on-
tologies. The reasoning is the process of extracting new knowledge from an ontology and its instance
base and represents one of the most powerful features, especially for dynamic and heterogeneous en-
vironments. A semantic reasoner is a software system whose primary goal is to infer knowledge that
is implicitly stated by reasoning upon the knowledge explicitly stated, according to the rules that have
been defined [23,24]. Reasoners are also used to validate the ontology, that is, they check the consis-
tency, satisfiability, and classification of its concepts to make sure that the ontology does not contain
any inconsistencies among its term definitions.

6.5 Integrated domain model
In the previous sections we introduced how the use of KG can provide standardized frameworks for
the concept representation in e-health systems exposing in a structured format the different representa-
tions converted to standard RDF formats and forming a context-aware resource graph. The framework
represents data collected in clinical environments, data collected in daily living environments, and high-
value domain knowledge. So, in our approach, the resource graph can be further expanded to include
concepts, relationships, and data from other ontologies and linked open projects. For example, we can
add a triple:

schema:anginapectorisowl : sameAssnomedct : 194828000

to indicate that the concept “angina pectoris” in the Schema.org vocabulary has the same meaning as
that of “snomedct:194828000” which is the ischemic heart disease concept under the SNOMED-CT
clinical ontology, also related to the class “Angina co-occurrent and due to coronary arteriosclerosis”
and the subclass “Preinfarction syndrome and related to Family history: Angina in first degree female
relative less than 65 years”.

Similarly, angina concept can be related to DBpedia (the central interlinking hub of the Web of
Data containing millions of RDF links to other Web data sources), Mesh (Medical Subject Headings,
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a comprehensive controlled vocabulary for the purpose of indexing life sciences journal articles and
books), or Wordnet (a fairly large on-line lexical reference system offering broad coverage of general
lexical English relations) by adding the following triples:

“schema:anginapectorisowl : sameAsdbpedia : 552599”

“schema:anginapectorisowl : sameAsmeshld : D000787”

“schema:anginapectorisowl : sameAswordnet : 14197107”

“schema:anginapectorisowl : sameAswordnet : 14131521”

which represent “disease of the throat or fauces marked by spasmodic attacks of intense suffocative
pain” and “the heart condition marked by paroxysms of chest pain due to reduced oxygen to the heart”
concepts.

So doing, we expanded the resource graph by linking it with other health ontologies, LOD, linked
open health data, and hierarchy concept graphs containing hyponyms and hypernyms. Accordingly,
they can be accessed and queried in a uniform way using standard languages. Data visualization in a
personalized manner is now possible through a Web dashboard. The homogenized data are now avail-
able for statistical analysis, for example to monitor the percentage of individuals aged 15 or above who
had cancer, or are overweight and obese, and also to survey health conditions and recourse to health
services. Once the data is represented as RDF and exposed through a SPARQL endpoint we can com-
bine them with other data belonging to a different LOD portal, because the different storage modalities
are irrelevant from a SPARQL query perspective. For instance, we could carry out a selective survey of
risk factors affecting the health status of all families living in a specific area by cross-checking data ex-
tracted from devices with those from the registry of families in the territory. The interpretation and the
processing of the resulted knowledge can be furthermore additionally enhanced owing to the SWRL to
propose rules for different goals, for example to verify the proper functioning of the connected objects
and the validity of the detected data and to provide the adequate service for patients [25]. Knowledge
reasoning over KGs, which is intimately bound up with RDFS and OWL, is closely related to ontology.
The reasoning method based on ontology mainly uses the more abstract frequent patterns, constraints,
or paths to infer. We used KG intelligent reasoning capabilities to perform domain knowledge reasoning
through modeled domain knowledge and rules. KG reasoning methods infer unknown relations from
existing triples, providing efficient correlation discovery ability for resources in KGs and completing
KGs. The framework is able to also include data collected by the sensors in daily living environments.
When the system starts receiving events from the sensors, the KG is automatically updated and a set
of inference rules is applied to infer the context of a specific patient, e.g., for the purpose of selecting
the appropriate care service and selecting the appropriate interaction device. For example, the following
rule allows us to detect the position of a subject by activating a proximity sensor; if the sensor’s status is
“on state”, the rule establishes that the subject assigned to the sensor is in the proximity of the object on
which the sensor is positioned. This is a general rule that may be useful for the recognition of activities
other than the one under examination.

Rule Sensor_detection: Sensor (?y)∧ hasType (?y, sensor_type )∧ assignedTo (?y, ?x)∧
hasCurrentState (?y, on_state )∧ deployedln (?y, ?r) -> detectedIn (?x, ?r)

The position of a patient detected by the previous rule allows the selection of the appropriate device
and could be enriched with other criteria related to the patient profile and preferences. For example,
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if the patient is detected in the bathroom and the sensor in the bathroom detects a presence exceeding
a certain threshold time, then an alert can be triggered and notified to both the patient and the closest
caregiver. Thanks to the rules described above, enabling the reasoner makes it possible to infer various
information on the position and status of the specific patient. In particular, its position has been auto-
matically inferred both at the level of proximity to the object and at the level of room and home thanks
to the Sensor_detection rule and partOf ontology properties; we also have information about the activ-
ities he is performing, and if one of them has generated an alert, also about which correct activity he
should perform. Finally, the assistant devices that will be activated to manage the service are inferred.
Moreover, consider that the sensors are characterized by numerous properties such as date range, fre-
quency, date and time, etc. We can set SWRL rules to automatically verify the values of vital signs
detected by the sensors, with respect to the interval that they must assume to validate the operation of
the sensor. The following rule performs the validity of sensor vital signs:

Rule Validity_vital_signs: IoT(?o)∧ Sensing-device(?s)∧ contains (?o, ?s)∧
Measurement(?m)∧ detects(?o,?m)∧ hasvalue(?m,?v)∧ hasmaxValue(?o,?maxv)∧
hasminValue(?o,?minv)∧ swrlb:greaterThanOrEqual (?v,?minv)∧ swrlb:lessThanOrEqual
(?v,?maxv) -> validity(?m, true)

We established a broad workflow that takes a stream of low-level-encoded IoT information in-
stances, transforms them to domain-level OWL concepts, and reasons with them to generate knowledge.
The use of rules is important to capture and modulate some characteristic aspects of the domain allow-
ing to describe relations that cannot be described using DL. Many efforts have been made to address
the challenges of knowledge representation and its related applications. However, there remain several
open problems and promising future directions; one of the most crucial is that related to scalability, es-
pecially on large KGs. There is a trade-off between computational efficiency and model expressiveness,
with a limited number of works applied to more than one million entities [26].

6.6 Discussion and conclusions
In this chapter, we have presented the application of KG technologies to manage rapidly changing and
highly interconnected relevant information in healthcare. In the context of connected medical objects
and freely available knowledge bases, we used knowledge reasoning on KGs to provide correlation
discovery capability for resources in heterogeneous KGs. We used the implicit information obtained
through the reasoning techniques to improve the context representation and proposed the creation of
knowledge-based queries and rules to provide automatic health decision support. Inference mechanisms
in ontology-based knowledge systems allow for the representation of additional attributes that cannot
be naturally inferred using traditional ontology models. Reasoning about enriched information can lead
to interesting considerations and conclusions. The research field of ontology-based reasoning KG is
still in an early stage of development and faces many challenges. In the future, it will be increasingly
important to explore the possibilities related to explicit knowledge reasoning to address the inherent
complexity that characterizes e-healthcare systems. For example, also the current COVID pandemic
made clear that the e-health community demands for unified frameworks for sharing and exchanging
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digital (epidemiological) data and facilitating the flow of information between health workers, stake-
holders, policymakers, and the public. In addition, a promising field of research that is evolving very
rapidly involves incorporating additional information like textual descriptions to semantically enrich
KG representations. While there is a great effort on embedding KGs, that is, binary relational struc-
tures, not much is known about embedding relations of higher arities, like events, without breaking
them down into binary incidence structures (set of pairwise edges) to express complex concept units.
To this end, recent developments in deep learning and natural language processing have enabled intel-
ligent ways to uncover structured, concise, and unambiguous knowledge.
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7.1 Introduction
Availability of a large amount of data in the medical sector and an increasing computational infrastruc-
ture to exploit them allow the definition of new advanced services for medical diagnosis to support the
work of medical doctors and to increase the quality of life of patients. Telemedicine, ambient assisted
living, and a better management of electronic health records are some of the new generation of services
that need to be further developed in the next years. Most of the issues that are faced by medical doctors
and ICT practitioners defining these services are related to their level of trust and reliability. How to
guarantee them is still in an open issue to be addressed.

To this regard, practitioners have defined a plethora of standards and specifications to be used for
better management of information and an increased level of trust of the adopting services. For instance,
SNOMED CT [1] and ICD-10 [2] are standardized specifications that are widely used in clinical con-
texts. However, further issues arise due to the lack of interoperability among these different standards,
and specifications adopted in the medical domain. Ontologies are recognized as an effective instrument
to deal with the interoperability problem and the human disease ontology (DOID) [3] and the Infectious
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Disease Ontology (IDO) [4] are only some of the many proposals in the area. However, existing ontolo-
gies cover different aspects of the medical domain and have different objectives spanning from clinical
diagnosis to a better organization of electronic medical records. To deal with such issues, we propose
a knowledge graph for medical diagnosis leveraging and aligning existing largely used standards and
ontologies. In detail, we present some of the typical issues to be faced and aligned them by focusing on
ICD-10, SNOMED CT, DOID, and SYMP ontology [5].

Then we discuss some scenarios of usage for the envisioned knowledge graph. We address how a
knowledge graph can benefit interoperability of electronic health records, can support clinicians in their
work and patients in increasing the quality of their lives by means of a new generation of telemedicine
services, and can be an added value for medical insurance services.

The rest of the paper is organized as it follows. Section 7.2 presents the related work in the area.
The strategy to develop the knowledge graph for medical diagnosis is presented in Section 7.3. The
issues for engineering the knowledge graph are presented in Section 7.4. Then, the envisioned usage
scenarios are described in Section 7.5. Finally, Section 7.6 draws some conclusions and future research
directions.

7.2 Related work
Patient medical records are more comprehensive and available than ever before. Refinements and sys-
tem upgrades are continually enhancing clinic workflows and doctor-patient interactions. Encoding
medical information is a complex task because vocabularies always involve a trade-off between com-
pleteness and usability, just as with an English dictionary. Many research projects succeeded to propose
a medical data vocabulary and taxonomy that are used in the hospitals [6]:

• CPT (Current Procedural Terminology)1 is a standard vocabulary used for procedures, and radiology
tests, laboratory tests that physicians or their staff perform in office settings. It does not include diag-
noses or conditions, including the intensity of outpatient visits. The American Medical Association
(AMA) founded the first version of CPT and released a new version every 4 years.

• Health Level 7 (HL7)2 is one of the several American National Standards Institute (ANSI)—accred-
ited Standards Developing Organizations (SDOs) operating in the healthcare area. It is dedicated to
provide a comprehensive framework and related standards for the exchange, integration, sharing and
retrieval of electronic health information that support clinical practice and the management, delivery
and evaluation of health services.

• UMLS3 [7] (The Unified Medical Language System) is a repository of biomedical vocabularies
developed by the US National Library of Medicine. The UMLS integrates over 2 million names
for some 900,000 concepts from more than 60 families of biomedical terminologies and 12 mil-
lion relations among these concepts. Vocabularies combined in the UMLS Metathesaurus include

1 https://www.ama-assn.org/amaone/cpt-current-procedural-terminology.
2 https://www.hl7.org/.
3 http://umlsks.nlm.nih.gov.
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https://www.hl7.org/
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the NCBI taxonomy,4 Gene Ontology,5 the Medical Subject Headings (MeSH),6 OMIM,7 and the
Digital Anatomist Symbolic Knowledge Base.8

• SNOMED CT [1] is a standardized, multilingual vocabulary of clinical terminology built to encode
the concepts and corresponding meanings that are used in health information and to support the
efficient clinical recording of data to enhance patient care. It provides codes, terms, synonyms, and
definitions used in clinical documentation and reporting. All SNOMED CT concepts are organized
into taxonomic (IS-A) hierarchies; for example, “viral pneumonia” IS-A “infectious pneumonia,”
“infectious pneumonia” IS-A “pneumonia,” and “pneumonia” IS-A “lung disease.” It provides the
core general terminology for electronic health records (EHR) most commonly in clinics office, not
hospitals. But it is hard to build tools to make SNOMED CT easy to navigate. Also, not all systems
use it. SNOMED CT can be mapped to other coding systems, such as ICD-9 and ICD-10, which
help facilitate semantic interoperability.

• ICD-10 [2] is the 10th revision of the International Classification of Diseases, which is a medical
classification created by the US National Center for Health Statistics (NCHS) and the Centers for
Medicare and Medicaid Services (CMS). All updates and official release are handled by the CDC
(Centers for Disease Control and Prevention).9 It contains codes for diseases, signs, symptoms,
abnormal findings, complaints, social circumstances, and external causes of injury or diseases. It is
a standard diagnostic tool for health management and is widely used by most hospitals today. ICD-9
is the previous version of ICD-10.

Data representation and information homogeneity between different medical institutions is a pri-
mary challenge for automatic diagnosis and disease detection systems. Ontologies have been widely
used in real-world applications domains from healthcare and life science to banking and government to
improve classification accuracy and information modeling. Most of the ontologies are expressed in the
well-known Web Ontology Language (OWL) [8]. Semantic reasoners such as Pellet [9] are all widely
adopted to produce ontology-based automatic classification systems. Medical ontologies are valuable
and effective methods of representing medical knowledge. In this direction, they are much stronger
than biomedical vocabularies since they enable reasoning and inference. The literature review refers to
several OWL ontologies for representing diseases.

• The human Disease Ontology (DOID) [3] is an open-source ontology developed to promote the
integration of biomedical data that is correlated with human disease. The latest release of DOID
[10] includes 17,563 disease terms. For some terms, it also includes references to UMLS MESH,
NCI, SNOMEDCT, ICD9, and ICD10.

• Symp [5] is an ontology that describes human symptoms. Each disease has several symptoms as-
sociated with it. The authors built an algorithm that aligns SYMP and DOID ontologies to relate
diseases and their symptoms. This alignment helps the automation of disease detection as demon-

4 https://www.ncbi.nlm.nih.gov/taxonomy.
5 http://geneontology.org/.
6 https://www.nlm.nih.gov/mesh/meshhome.html.
7 https://www.ncbi.nlm.nih.gov/omim/.
8 https://pubmed.ncbi.nlm.nih.gov/9452983/.
9 https://www.cdc.gov/.
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https://www.nlm.nih.gov/mesh/meshhome.html
https://www.ncbi.nlm.nih.gov/omim/
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https://www.cdc.gov/
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strated in [11], but not all diseases are connected to symptom concepts. SYMP has been integrated
in DOID ontology, and the latest version10 links a few diseases to their symptoms.

• The Infectious Disease Ontology (IDO) [4] was developed to assist the analysis of the COVID-19
disease. It includes three extensions: IDO Virus (VIDO), the Coronavirus Infectious Disease Ontol-
ogy (CIDO),11 and an extension of CIDO focusing on COVID-19 (IDO-COVID-19). IDO covers the
entities relevant to infectious diseases generally and not specific contagious diseases associated with
particular pathogens. Its coverage ranges across biological scales (gene, cell, organ, organism, popu-
lation), disciplinary perspectives (biological, clinical, epidemiological), and successive stages along
the chain of infection (host, reservoir, vector, pathogen) [12]. At the heart of the IDO Core, there is
the term disease, which is imported from the Ontology for General Medical Science (OGMS) [13].

• The Smart Health Care Ontology for healthcare (SHCO)12 is an ontology created to describe a
patient’s episode in an intelligent environment where IoT medical devices are implemented. The
ontology describes the patient’s information, vitals, diagnosis, the connected health devices, disease,
and the involved actors such as the nurse and the doctors.

In the literature, specific ontologies have been developed to describe the concepts related to a
specific disease. For instance, many ontologies have been proposed to model information related to
COVID-19 supporting the organization and representation of COVID-19 case data on a daily basis.
Examples of these ontologies are CODO [14], an ontology for collection and analysis of covid data,
Kg-COVID-19,13 and Linked COVID-19 Data: Ontology.14 The cardiovascular ontology [15] com-
pletes DOID ontology with cardiovascular taxonomy and rules to determine the end point of a disease
course, and to locate the material basis of a cardiovascular disease. Other specific disease ontologies
are the neurological disease ontology [16], fibriotic disease lung [17], and cancer visualization ontology
[18].

The presented terminologies and ontologies are used today by the healthcare systems. However,
the usage of the terminologies can vary from hospital to hospital and from one country to another.
Therefore, the usage of different codes makes data sharing and processing hard tasks. To address this
issue is a challenging activity that represents the motivation for many projects that are working on
integrating and mapping codes from different terminologies. For instance, the DOID ontology includes
disease and medical vocabularies from MeSH, ICD, NCI’s thesaurus, SNOMED CT, and OMIM. In
[19], the authors have integrated some ICD-10 concepts, ICD-O3 cancer diagnosis terminologies and
SNOMED CT. The objective of this project is to improve the reuse of oncology data that is limited
because of the heterogeneity of terminologies. The project presented in [20] focuses on harmonizing
the WHO (World Health Organization) classifications and SNOMED CT within the ICD-10 version.
A mapping effort between the terms shows that the WHO terms are semantically and hierarchically
different from the terms of SNOMED CT. The study suggests some collaboration between the entities
to enhance EHR. All of the integration frameworks efforts until today are still at their early stage;
they are either focusing on specific diseases (heart diseases, oncology, etc.) or they are focusing on
integrating some terminologies.

10 https://bioportal.bioontology.org/ontologies/DOID/?p=summary.
11 https://bioportal.bioontology.org/ontologies/CIDO.
12 https://tiwari2019.github.io/myrepo/OnToology/Healthcare.owl/documentation/index-en.html.
13 https://github.com/Knowledge-Graph-Hub/kg-covid-19.
14 https://zenodo.org/record/3765375#.XraWJmgzbIU.
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FIGURE 7.1

Backbone of the knowledge graph for medical diagnosis.

7.3 A knowledge graph for medical diagnosis
The plethora of existing medical standards, vocabularies, taxonomies, and ontologies presented in Sec-
tion 7.2 are a significant step toward an effective digitalization aimed at supporting medical doctors.
However, hospitals use standards mainly with the goal of indexing and retrieving electronic medi-
cal records. Conversely, an automatic medical diagnosis would require ontologies, such as DOID,
to perform reasoning on available knowledge. Unfortunately, they are not widely used in hospitals.
Furthermore, the exchange of electronic medical records between different hospitals using different
standards could face interoperability issues, for instance, due to different names assigned to medical
terms, different conceptual structures, or even different units of measure.

According to [21], a knowledge graph is “a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose edges represent
relations between these entities.” A knowledge graph for supporting medical diagnosis should define
the concepts and the relationships pertaining to this domain of interest. Our idea is that this knowledge
graph should leverage already existing knowledge developed by the medical community. To this aim,
we propose to align and merge existing ontologies and standards into a unique knowledge structure.
As a first step toward the development of the knowledge graph for medical diagnosis here, we present
the main issues in aligning some of the most representative medical ontologies. In particular, we focus
on DOID and SYMP ontologies, which address diagnosis of human diseases, and SNOMED CT and
ICD-10, which provide the most comprehensive classifications of medical terms.

The backbone of the envisaged knowledge graph is sketchily depicted in Fig. 7.1. In our proposal,
the DOID ontology plays a key role since it puts together symptoms and diagnosis. It should be noted
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that it already includes elements from the above-mentioned specifications but the resulting integration
is still preliminary.

7.4 Issues for ontology alignment
Ontology matching is the operation of finding correspondences between semantically related entities
of ontologies, which determines an alignment between ontologies [22]. Here, we present some of the
issues identified to match the DOID and SYMP ontologies, and DOID and ICD-10. Indeed, we also
assume social validation [23,24] by domain experts [25] of the resulting alignments as an open issue to
be tackled to guarantee trust and reliability of the envisaged medical services leveraging the knowledge
graph; however, here, we focus on the technical aspects of ontology matching. The social validation
problem will be treated in a future work.

7.4.1 Alignment between DOID and SYMP ontologies
A precondition for semantics-based medical diagnosis is the availability of an ontology where all the
concepts representing the diseases are connected to the concepts representing the corresponding symp-
toms. The DOID ontology includes 8084 diseases15 but only 409 are connected to symptoms, which
are imported from the SYMP ontology, by means of the object property named “has_symptom.” For
instance, the disease named “intestinal tuberculosis” is connected to “nausea,” “bleeding,” “vomiting,”
and “gastrointestinal bleeding.” This means that more than 94% of diseases included in the ontology
are not connected to any symptom. Hence, the amount of work for domain experts to connect diseases
with symptoms could be exhausting. However, this can be reduced by analyzing the names and defini-
tions of the ontology concepts representing diseases. In fact, 5067 out of the 7675 diseases (66.02%)
without symptoms have a definition in the ontology. In detail, the following cases occur:

• A term describing a symptom is contained in the disease label of a disease included in DOID. For
instance, “coma” is a symptom of the disease named “hepatic coma.”

• A term describing a symptom is contained in a disease definition. Hence, it is possible to search for
textual patterns in disease definitions. Fig. 7.2 shows how a label of a symptom from the SYMP
ontology is searched in the definitions of the diseases contained in the DOID ontology. In detail, the
symptom named “cough” is contained in the definition of the disease named “respiratory syncytial
virus infectious disease.” Accordingly, the pair disease-symptom can be connected together through
the object property “has_symptom.”

7.4.2 Issues for ICD-10 and DOID-SYMP alignment
Mapping DOID and SYMP ontologies is essential to building the knowledge graph for medical di-
agnosis. However, mapping ICD-10 to both ontologies is another challenge that must be tackled. In
fact, ICD-10 is used by most hospitals to classify and code all diagnoses, symptoms, and procedures

15 This number considers only diseases that are not further specified in the ontology. The used DOID ontology was downloaded
on August 21, 2020.
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FIGURE 7.2

Search of SYMP symptoms in the definitions of DOID diseases.

in IT systems. In contrast, DOID aligned with SYMP provides the required understanding of the dis-
eases and their relations to the symptoms. The SYMP ontology includes 874 symptoms, but no one
has been mapped to an ICD-10 code. This means that all the symptoms in the SYMP ontology must
be mapped to the ICD-10 codes. Only 182 symptoms are connected and cross-referenced to ICD-9,
with the object property “hasDBXRef.” The same terms are also connected to other databases such as
SyOID and UMLS. For instance, the symptom “abdominal pain” has the following cross-references
“ICD9CM2005:789,” “SyOID:2880,” “UMLS:C0000737.” ICD-9 is an older version of ICD-10 that
is not used anymore by hospital information systems. But, the CDC has provided official mapping
between ICD-9 and ICD-10; hence, ICD-9 could be used to map some symptoms to ICD-10.

From the other side, the DOID ontology includes 8084 diseases that have been extracted from dif-
ferent databases such as NCI, MESH, and SNOMED CT. 3522 diseases have been cross-referenced
to medical databases, including ICD-10 codes with the object property “hasDBXRef.” Hence, around
60% of the terms must be mapped to ICD-10 codes. From the other side, the remaining non-ICD-10
referenced diseases include 442 mapped to ICD-9, and 3912 diseases mapped to SNOMED CT terms
and others. Besides ICD-9, SNOMED CT is a very well-known and used ontology. An active commu-
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FIGURE 7.3

An example of mapping symptoms from ICD-9 to ICD-10.

FIGURE 7.4

An example of mapping symptoms from ICD-9 to multiple codes in ICD-10.

nity runs it, and a mapping between SNOMED CT and ICD-10 is officially released. In conclusion,
mapping DOID and SYMP to ICD-10 requires mapping three types of terms:

• diseases/symptoms referenced with ICD-9 codes;
• diseases/symptoms referenced with SNOMED CT codes;
• diseases/symptoms that are not referenced by any database.

Based on the previously mentioned terms, three ways are possible in order to map DOID and SYMP
terms to ICD-10:

1. Using the CDC conversion files: ICD-9 consists of a tabular list containing a numerical list of the
disease code numbers in tabular form, an ordered index to the disease records, and a classification
system for surgical, diagnostic, and therapeutic procedures. CDC provides materials and guidelines
for converting ICD-9 to ICD-10. For instance, the file 018_I9gem consists of a tabular list containing
the ICD-9 in the first column and the corresponding ICD-10 code in the second column. An example
of the mapping codes is shown in Fig. 7.3. This mapping presents a challenge related to the fact that
ICD-10 includes more terms than ICD-9. This is due to the detailed description of the diseases in the
new ICD-10. This fact has led to finding in some cases where one ICD-9 code can be mapped into
multiple ICD-10 codes as shown in Fig. 7.4. This case can be solved by adding all the ICD-10 codes
as children nodes of the originally general term. In any case, based on the practitioners’ diagnosis,
either they choose the specific code or the general one. No data is missed in that case.

2. Using the SNOMED CT ontology: In DOID, 3,912 diseases are mapped to SNOMED CT terms.
SNOMED CT is considered one of the most comprehensive terminologies in healthcare. In or-
der to support automation of clinical data and improve reimbursement, SNOMED CT proposed a
SNOMED CT to ICD-10-CM map (referred to as “the Map”) as well as a collection of materials
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and guidelines for the same purpose.16 Moreover, the I-MAGIC (Interactive Map-Assisted Gener-
ation of ICD Codes) algorithm can be used as well to map the SNOMED CT to ICD-10-CM in
real-time. Using SNOMED CT to map DOID terms to ICD-10 is a good solution, even though it is
accompanied by hard programming and technical work.

3. Performing string matching: A further and complementary strategy for mapping SYMP and ICD-
10 entries is based on the exploitation of textual information present in both the resources. In the
SYMP ontology, all of the concepts have a label, which is the name for referring to the symptom.
Furthermore, 249 symptoms are associated with a natural language description, i.e., a sentence ex-
plaining the meaning of the symptom, which is defined via the http:/ /www.w3.org/2002/07/owl#
IAO_0000115 property, whereas 156 concepts are associated with a synonym via the #hasExact-
Synonym17 property. Finally, 76 concepts have both a description and a synonym.
Concerning ICD-10, beside the label, most of the concepts have a short description and approximate
synonyms, which are a natural language definition, and alternative terms for referring to a concept,
respectively.
The key idea is to apply natural language techniques to compare textual information from SYMP
and ICD-10, in order to identify mappings between entries from the two resources.

7.5 Usage scenarios for the medical diagnosis knowledge graph
In this section, we illustrate three real-world cases that can benefit from semantic solutions and the
adoption of an integrated knowledge graph in the medical sector. The first scenario is about the Elec-
tronic Health Records (EHR) where semantic interoperability is still a key open issue. The second
scenario is about telehealth and telemedicine where semantics-based reasoning systems can help to
support a diagnosis formulation remotely. Finally, the third scenario is about medical insurance, where
semantic reasoning and the semantic integration and interoperability between business process man-
agement systems from different institutions, e.g., hospitals and insurance companies can improve and
speed up processing of medical policies.

7.5.1 Electronic health records interoperability
The Electronic Health Record (EHR) is the digital version of the medical history of a patient. Currently,
it is having a great impact on the medical sector. In particular, the global electronic health records
market size is expected to reach USD 35.1 billion by 2028, registering a compound annual growth rate
(CAGR) of 3.7% over the forecast period, according to a report by Grand View Research, Inc.18

One of the key features of an EHR is that health information can be created and managed by autho-
rized providers in a digital format capable of being shared with other providers across more than one
healthcare organization. However, this cross-organizational sharing of information is possible only if
EHR interoperability is fully implemented.

16 https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html.
17 IRI: http://www.geneontology.org/formats/oboInOwl#hasExactSynonym.
18 https://www.grandviewresearch.com/press-release/global-electronic-health-records-market.

http://www.w3.org/2002/07/owl#IAO_0000115
http://www.w3.org/2002/07/owl#IAO_0000115
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
https://www.grandviewresearch.com/press-release/global-electronic-health-records-market
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Interoperability is complex, and goes beyond the ability to move information from a system to
another. According to the Healthcare Information and Management Systems Society,19 interoperability
can be classified into three levels:

• Foundational, which enables one EHR system to receive data from another system but it does not
require that the receiver is able to interpret it.

• Structural, which enables data to be exchanged between information systems and interpreted at the
data field level.

• Semantic, which requires that two systems can exchange, interpret, and use information.

Hence, two EHR systems are truly interoperable if they are able to exchange and then use the data. For
this to occur, the transferred content must contain standardized coded data so that the receiving system
can interpret it. In particular, interoperability at semantic level requires that involved organizations
and institutions agree on standards for representing different health-related information and that such
standards are somehow integrated. However, lack of standardized data is still an issue, limiting the
ability to share data electronically for patient care [26].

In this scenario, a knowledge graph for medical diagnosis can play a significant role for addressing
the desired semantic interoperability in the clinical sector. Knowledge graphs deal with the represen-
tation of the structure and the semantic relations and, due to their formal nature, they can facilitate the
definition of nonambiguous computational vocabularies, and enable solutions for data interoperability.
Furthermore, the knowledge graph can be applied for classification tasks as for instance by Fries et
al. [27], where ontologies are used in combination with rules generated by medical experts in order to
label patient records.

For example, a patient has their health records at a local hospital that uses ICD-10 codes for dis-
eases and diagnoses and CPT for medical procedures and services (EHR1). The patient is on vacation
and falls ill. Hence, she goes to visit a clinic that uses SNOMED-CT as clinical terminology (EHR2).
First, the patient may not be able to provide all details of her medical history, which can make a differ-
ence for the doctor charged with his care. Second, the diagnosis saved under EHR2 will not be shared
with her local hospital. A knowledge graph that aligns different clinical terminologies and standards
such as SNOMED-CT and ICD-10 provides interoperable electronic health records. It also allows the
electronic sharing of patient information between other EHR systems and healthcare providers across
organizational boundaries.

7.5.2 Automatic reasoning in telemedicine
Telemedicine is the delivery of health care information across distances. As such, it encompasses the
whole range of medical activities including diagnosis, treatment and prevention of diseases, as well
as continuing education of healthcare providers and consumers, and research and evaluation [28].
Telemedicine will shift care from hospitals and clinics to homes and mobile devices. This transition
will revolutionize the provision of health services in the same manner as home banking and online
shopping is doing in other sectors.

19 https://www.himss.org/.

https://www.himss.org/
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The number of people using telemedicine has increased steadily over the years. For instance, accord-
ing to the American Telemedicine Association20 more than half of all US hospitals has a telemedicine
program, whereas the UK’s National Health Service Long Term Plan21 claimed that “digitally enabled
care will go mainstream.” Furthermore, current reports estimate that telemedicine’s influence will con-
tinue to swell over the next few years, too. In fact, the global telehealth market is expected to reach
$266.8 billion by 2026, showing a CAGR of 23.4% between 2018 and 2026. Telemedicine also has
emerged as a critical technology to bring medical care to patients while attempting to reduce the trans-
mission of COVID-19 among patients, families, and clinicians [29].

Common telemedicine services include: virtual visits, which shorten the wait for an appointment
and ensure you get healthcare wherever you are located. In a typical telemedicine interaction, patients
send health-related information to medical doctors, as for instance, blood pressure and blood sugar,
but also images of a wound, eye, or skin condition, as well as medical records filed by another doctor,
such as X-rays. Consequently, the doctors can send information to manage people’s care at home, as
for instance, notifications or reminders to take medication, new suggestions for improving diet and
mobility, etc.

Health ontologies, such as the Telehealth Smart Home ontological model [30], have already proven
to be effective to support telemedicine [31]. A knowledge graph for medical diagnosis, where diseases
and symptoms are connected, can enable engineering of reasoning systems capable to support doctors
in analyzing data remotely captured through medical devices and in prising the adequate decision as, for
instance, when a patient has to be routed to the right specialist. Hence, in this scenario, the envisaged
usage for the knowledge graph for medical diagnosis is to support automatic diagnosis based on the
symptoms of a patient. Semantic similarity is an artificial intelligence technique that makes it possible
to compute how much two semantically annotated resources (e.g. an electronic health record or the
description of a disease) are similar. Usually, semantic similarity reasoning leverages either only the
taxonomy [32], or even other kinds of relations defined in an ontology [33]. It can be used to estimate
the similarity value between a set of symptoms reported in the electronic health record of a patient and
the symptoms characterizing a disease. The most likely diseases are those with the highest similarity
values with respect to the patient’s symptoms. Indeed, the knowledge graph presented in this paper
gathers both knowledge about diseases and that about symptoms, included, respectively, in the DOID
and Symp ontologies. In addition, chatbots supported by semantic inference systems could directly
interact with patients and reasoning on a mix of background knowledge (e.g., knowledge graphs) and
patient specific data in order to respond to specific questions from the patients themselves.

7.5.3 Medical insurance management
A medical insurance helps to cover the expenses related to examinations, surgeries, and any other health
treatment. Also, medical insurances represent a big economic market. In fact, the global healthcare
insurance market size was estimated at 2.4 trillion in 2019 and is expected to expand at a CAGR
of 6.7% from 2020 to 2027.22 The market is majorly driven by the high cost of healthcare, rising
prevalence of chronic diseases as well as increasing disposable income. Even the COVID-19 has created

20 https://www.americantelemed.org/.
21 https://www.longtermplan.nhs.uk/.
22 https://www.grandviewresearch.com/industry-analysis/healthcare-insurance-market.

https://www.americantelemed.org/
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a positive impact on the healthcare insurance industry as more and more people have started investing
in healthcare plans. There has been a rise of 50.0% in the queries related to health policies due to the
global COVID-19 pandemic. In order to speed up processing of medical insurance policies, semantic
interoperability can be crucial. Insurance organizations and systems need to communicate with medical
organizations and systems. The correct and unambiguous identification of terms describing pathologies
and medical treatments is fundamental. This is true both at data and process level. In fact, in a future
of increasing automation systems, different organizations need not only to exchange data in a seamless
way but also to enable processes to interact reducing the human intervention as much as possible.
The adoption of a knowledge graph that includes diseases and treatments can help in automatically
understanding the validity of a request of reimbursement.

For instance, imagine that a request of reimbursement has been received by an insurance company.
The informative system of the company analyzes the medical prescription accompanying the request
and finds out that the patient needs for a “nose reconstruction with skin graft.” Accessing the underlying
knowledge graph, and in particular the taxonomic organization of treatments, the system is able to
understand that reconstruction nose with skin graft is a specific case of rhinoplasty, since the former
is a subclass of the latter, and in turn, it is a plastic surgery. According to the policies of the insurance
company, a plastic surgery cannot be reimbursed if not motivated properly. Then, since no further
documentation has been provided, the request is automatically rejected by the system.

Furthermore, a knowledge graph where diseases and treatments are integrated and linked can enable
systems to automatically detect whether new health problems are related to previously existing diseases.
In fact, in this case, according to the specific insurance policy, reimbursement requests can be rejected
or partially accepted. For instance, suppose that a person sends a request of reimbursement about an
arthroscopy of the left knee with meniscus repair to her insurance company. If the information system
of the company is based on a knowledge graph linking diseases and treatments, it can understand that
the arthroscopy of left knee with meniscus repair is a kind of procedure for addressing knee-related
problems, as for instance a knee injury. Then, if the history record maintained by the company about
the person says that in the distant past, she had a left knee injury, the company can decide to reject the
request or at least to ask for additional medical examinations.

7.6 Conclusion
This article introduced several terminologies in the healthcare system. We discussed the importance of
medical ontologies to understand the concepts of the medical domain better, for instance, DOID ontol-
ogy aligned with the SYMP ontology provides a clear knowledge about diagnosis and their symptoms.
We proposed to use ICD-10 as a key for automation, reasoning on clinical data, and disease diagnosis.
A careful survey of the current research on disease diagnosis ontologies reveals that the alignment of
DOID and SYMP ontology effectively describes diseases and related symptoms. However, this align-
ment is not enough for disease diagnosis; ICD-10 codes must be referenced in the ontology to align
with the clinical terms and codes. This alignment employs multiple challenges related to mapping
DOID terms with SYMP terms from one side. From the other side, connecting DOID and SYMP terms
to ICD-10 is another challenge that must be tackled. In this article, we presented potential solutions
to face these challenges: text matching and use of official transitions file from ICD-9 and SNOMED
CT to ICD-10. Finally, we presented the challenges and potential of using semantic technologies in
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healthcare. As future work, we intend to consider other ontologies, standards, and specifications for the
alignment with the medical diagnosis knowledge graph.
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“Let food be thy medicine and medicine be thy food.”
Hippocrates

8.1 Introduction
Lancet Planetary Health 2019 [1] published that it will be the year of nutrition: links between food
systems, human health, and the environment. Because of the COVID-19 world-wide pandemic, there
is a need for any complementary solutions to boost the immune system. Matt Ritchell’s immune sys-
tem book [2] encourage better sleep, physical exercise, meditation, and nutrition. Nowadays, healthy
lifestyle, fitness, and diet habits have become central applications in our daily life: (1) “Healthy diet
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is the most effectual approach to prevent disease. Food and victuals is a key to have good health”
according to [3], and (2) Chopra and Tanzi encourage a balanced diet [4].

Increasingly, Recommendation Systems (RS) [5,6] are invading our lives (e.g., YouTube for
videos, Amazon for products, and Netflix for movies). Existing RS system surveys do not address sug-
gestions to boost the immune system yet [7] (machine learning-based RS published in 2018) [8–10].
Well-being RS (published in 2019) [11] illustrates the emerging research need. The are several kinds of
recommendation systems: (1) Content-based (CB) comes from information retrieval and information
filtering, (2), Collaborative filtering (CF) predicts item utility for a particular user based on the items
previously rated by other users, (3) knowledge-based (that we are interested in this book chapter), and
(4) hybrid approaches.

Investigating well-being applications for a healthy lifestyle is time-consuming for users and requires
an eagerness to learn. Boulos et al. [12] highlight there are missing links between exiting food ontolo-
gies. There is a need to ease the integration of those food ontologies and enrich them with the necessary
knowledge to boost the immune system since none of them address it yet.

There is a need to design a naturopathy knowledge graph to be employed within a knowledge-
based recommender system to boost the immune system. The naturopathy knowledge graph integrates
ontology-based food projects to reuse past expertise and disseminate FAIR principles [13] by encourag-
ing researchers to share their reproducible experiments by publishing online their ontologies, data sets,
rules, etc. The set of the ontology codes shared online can be automatically processed; if the ontology
code is not available yet, the scientific publications describing the food ontologies are semiautomati-
cally processed with Natural Language Processing (NLP) techniques to feed the food reasoning engine
to build the naturopathy recommender system.

We combine multidisciplinary approaches: naturopathy describing foods and its benefits, and smart
health using IoT (see our other book chapters [14,15], more focused on this topic) and AI technologies
(knowledge-based systems).

We designed the following Research Questions (RQ):

• RQ1: Is there any food that can help boost the immune system?
• RQ2: Are there reusable ontologies describing food?
• RQ3: How to deduce meaningful information (e.g., data analytics) for food data? How to design the

well-being recommendation system to encourage a diet that boosts the immune system?

Contributions (C):

• C1: Food ontology catalog (and its associated tools) is designed to encourage past projects to share
their expertise implemented as ontologies; it addresses RQ2 and is explained in Section 8.2.2, Sec-
tion 8.3.1, and Table 8.1.

• C2: A unified food knowledge based focused on naturopathy to improve well-being and boost the
immune system; it addresses RQ1 and is explained in Section 8.3.2.

• C3: A reasoning engine is designed to provide more sophisticated suggestions and address require-
ments such as allergies, diets, etc.; it addresses RQ3 and is explained in Section 8.3.3.

Structure of the chapter: Related work reviewed in Section 8.2. The naturopathy knowledge graph
and recommendation system to boost the immune system is described in Section 8.3. The conclusion
and future work are provided in Section 8.4.
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8.2 Related work: food knowledge graphs and recommendation systems
This section classifies existing work into tree main categories: (1) Food knowledge graphs (ontologies
and data sets) in Section 8.2.1, (2) food-based recommender system in Section 8.2.2, (3) food informa-
tion extraction in Section 8.2.3, and (4) shortcomings of the literature study in Section 8.2.4.

8.2.1 Food knowledge graphs: ontologies and data sets
DBpedia [16] (semantic version of Wikipedia) references food and their nutrients, but there is no
emphasis on which ones can boost the immune system. Edamam1 is a food knowledge base that
highlights nutrients while cooking recipe. Boulos et al. [12] review food ontologies. We enrich the food
ontology catalog with more projects referenced by the authors even if the ontologies are not available
yet (see Table 8.1). OntoFood2 ontology (available in the BioPortal biomedical ontology catalog) is
integrated with SWRL nutrition rules for diabetic patients. FoodOn (Griffiths et al. [17]) design the
farm-to-fork food ontology to describe food safety, food security, agricultural, and animal husbandry
practices linked to food production, culinary, nutritional and chemical ingredients, and processes. Food
Product Ontology (Kolchin et al. [18]) is an ontology that describes food products: product, price,
store, and company data. Open Food Facts3 is an open source food database: users can search for
food’s nutritional information and compare products from around the world [12]. The food industry
use Open Food Facts to track, monitor, and plan food production. AGROVOC4 [19] is a widely used
in agriculture, fisheries, forestry, and food. FoodWiki (Celik et al. [20]) classifies foods, nutritional
information, and the recommended daily intake. Cantais et al. [21] design a food ontology to provide
guidance for diabetes patient. Chang-Shing et al. [22] design a web-based system helping tourists plan
menus based on nutrition analysis and food composition.

Conclusion: None of those works provide explicit descriptions on food that boost the immune system.

8.2.2 Food recommender systems
Personal Health KG for diet (that includes an ontology) (Seneviratne et al. [23]) consider user’s
temporal personal health data (and mentioned our Personalized Health KG past work [24]) to personal-
ize dietary recommendations for diabetic patients. Food recommendations are provided to answer such
questions: (1) What should I eat for breakfast? (2) What foods can I eat if I have a dairy allergy? (3)
What can I substitute for food Y? (patient’s taste preferences).

ProTrip (Subramaniyaswamy et al. [25]) is an IoT health nutrition-centric and ontology-based
tourism recommender system based on hybrid filtering mechanisms (collaborative, content-based, and
knowledge-based). ProTrip adapts user’s food preferences through a questionnaire-based survey: al-
lergic constraints, preferred type of food (vegetarian, nonvegetarian, egg containing), sweet and spice
level, and availability according to climatic conditions and local areas. The recommender system con-
siders chronic diseases such as asthma, cold, kidney stones, diabetes, haemophilia, hyperlipidaemia,

1 https://www.edamam.com/.
2 https://bioportal.bioontology.org/ontologies/OF/?p=summary.
3 https://vest.agrisemantics.org/content/open-food-facts-food-ontology.
4 http://agroportal.lirmm.fr/ontologies/AGROVOC.

https://www.edamam.com/
https://bioportal.bioontology.org/ontologies/OF/?p=summary
https://vest.agrisemantics.org/content/open-food-facts-food-ontology
http://agroportal.lirmm.fr/ontologies/AGROVOC
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hypertension, hypothyroidism, migraine, rheumatoid arthritis, ulcer, and wheezing. ProTrip uses the
Apache Mahout recommendation engine library (SlopeOne recommender schemes). The recommender
system is evaluated with participants from the International Symposium on Big Data and Cloud Com-
puting Challenges 2015: 76% of participants disclose the accuracy of the recommendations as a 5-star
rating for relevance and 80% of the users feel ProTrip as a health-centric recommender system.

Smart Recommender System of Hybrid Learning (SRHL) (Nouh et al. [11]) suggests healthy
food for personalized well-being and prevents diseases. The hybrid RS (content-based and collabora-
tive filtering), uses unsupervised machine learning algorithms. The recommendations take into account
time, activity, location, monetary costs, ingredients, health, nutritional value, availability, and the effects
of combining the ingredients.

The Iranian snack knowledge-based recommender system mobile application for type II dia-
betic patients (Norouzi et al. [26] [27]) also provides constraint-based reasoning and a roulette wheel
algorithm. Recommendations take into consideration patients’ interests, Iranian culture, dietary habits,
and seasons. No ontology is employed within this knowledge-based RS. The RS has been evaluated
with nutritionists who also provided diets.

Personalized Dietary Recommendation For Travelers (Karim et al. [28]) integrates an ontology
that combines food, nutrition, and travel concepts. Since food and nutrition concepts are already mod-
eled within the ontology, it would be highly relevant to reuse the knowledge. Furthermore, eight SWRL
rules executed with the Pellet reasoner have been developed for providing recommendations (e.g., this
is a dish for breakfast/lunch/dinner, an obese patient, heart patient, and healthy person).

Diet Food Recommendation System (DFRS) for Diabetic Patients (Kumar et al. [3]), hybrid
RS (content and collaborative-based), suggests dishes for the type of diet menu according to the total
nutrition to be taken daily. It comprises: data preprocessing, weight tuning, diet planning, food ontology
construction, SOM training, and K-means clustering.

Health food recommendation system (Ge et al. [29,30]) for mobile Android platforms suggest
recipes by taking into consideration users’ health (e.g., chronic diseases such as obesity and diabetes)
and users’ preferences. This RS does not use ontologies.

Al-Nazer et al. [31] highlight that queries such as “Does eating bananas prevent diabetes?” are not
easily answered by web search engines. Semantic web technologies are employed for understanding
the users’ queries and structuring the information on the web. Personal preferences, heath constraints
(pregnant, smoker, diseases, allergies, medical history), culture, and religions are considered for food
recommendation. The user’s profile ontology collect user name, gender, weight, height, blood type,
skin color, and Body Mass Index (BMI), and food search history. Four hundred fifty-three queries are
collected from different sources such as domain experts, users through surveys and health consumer
websites and categorized into: food-centric, nutrition-centric, recipe-centric, disease-centric, body part-
centric, and body function-centric.

NutElCare Ontology-based RS (Espin et al. [32]) suggests healthy diet plans for the elderly. The
ontology defines the user profile: Body Mass Index (BMI), time of year and geographical environment,
physical activity, and the level of mastication and swallowing of the user. NulElCare collects and rep-
resents nutritional information to provide nutrition tips for the elderly. NulElCare retrieves reliable and
complete nutritional information from expert sources, either humans (e.g., nutritionists, gerontologists,
bromatologists) or computerized (e.g., information systems, nutritional databases, World Health Or-
ganization (WHO)) and Spanish Society of Patental and Enteral Nutrition SENPE recommendations.
NutElCare uses the AGROVOC FAO thesaurus. Espin et al. address the problem of heterogeneity of
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the representation of information that prevents the information from being reused by other processes or
applications.

FOODS ontology and web-based food-menu RS (Snae et al. [33]) is addressed for patients with
diabetes in Thailand. The RS is based on PIPS (Personalised Information Platform for health and
life services).5 FOODS recommends recipes by considering ingredient nutritional factors and seasonal
availability of specific ingredients, according to user profiles (e.g., age, and diet during the week).

Conclusion: None of those work design a naturopathy recommender systems to boost the immune
system.

8.2.3 Food information extraction with natural language processing: named-entity
recognition

FoodOntoMap (Popovski, Eftimov et al. [1]) extract food concepts from recipes, using semantic tags
from their food ontology. 22,000 recipes from Allrecipes are gathered from five recipe categories: ap-
petizers and snacks, breakfast and lunch, dessert, dinner, and drinks. It is claimed there is no annotated
corpus with food concepts, and there are only a few rule-based food named-entity recognition sys-
tems for food concepts extraction. We will demonstrate that Table 8.1 helps in finding, classifying,
and reusing existing ontologies. FoodIE (Popovski, Eftimov et al. [34])6 is a rule-based food-named
Named-Entity Recognition (NER) method for food Information Extraction (IE) from unstructured
recipe data. The rule engine executes computational linguistics and semantic information rules describ-
ing the food entities. FoodIE comprises four steps: (1) Food-related text preprocessing (e.g., remove
quotation marks, white space, ASCII transliteration, standard mathematical decimal notation), (2) Text
POS-tagging and post-processing of the tag data set, (3) Semantic tagging of food tokens in the text,
and (4) Food-named entity recognition. The data set comprises 200 recipes that are processed and
evaluated (100 recipes analyzed to build the rule engine, 100 new recipes for test phase). Recipes are
from Allrecipes (https://www.allrecipes.com/) and MyRecipes (https://www.myrecipes.com/); it high-
lights there is no standardized format for the recipe description. FoodBase7 is released by Popovski and
Eftimov et al.

Conclusion: Those works apply NLP techniques on recipes, rather than food ontologies or scientific
publications describing ontologies.

8.2.4 Shortcomings of the literature study
We summarize the following limitations of the literature study:

• Doing the systematic literature review is a time-consuming task. There is a need to share the litera-
ture review innovatively (e.g., a knowledge repository for food supported by tools) to ease the work
of future researchers. The set of ontologies are classified in Table 8.1.

5 http://www.csc.liv.ac.uk/~floriana/PIPS/PIPSindex.html.
6 https://github.com/GorjanP/foodie.
7 http://cs.ijs.si/repository/FoodBase/foodbase.zip.

https://www.allrecipes.com/
https://www.myrecipes.com/
http://www.csc.liv.ac.uk/~floriana/PIPS/PIPSindex.html
https://github.com/GorjanP/foodie
http://cs.ijs.si/repository/FoodBase/foodbase.zip
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FIGURE 8.1

Well-being recommender system architecture [36]. This chapter focuses on naturopathy to boost the immune
system.

• A lot of ontologies cannot be exploited since they are not accessible online. There is a need to
disseminate best practices (e.g., following FAIR principles [35]) to ease the task of computers to
analyze ontologies and extract meaningful domain knowledge automatically.

• There is a lack of prototypes/experiments (e.g., web service, web application) that can be easily
reproduced or tested to understand the applications and illustrate the limitations clearly.

• NLP techniques are applied on recipes, rather than food ontologies or scientific publications describ-
ing ontologies.

• Explicit descriptions on food that boost the immune system are missing within food ontologies.
• There is no naturopathy recommender system to boost the immune system.

8.3 Naturopathy knowledge graph and recommendation system to boost
immune system: knowledge-based immune system suggestion

This section explains the knowledge-based naturopathy recommender system to boost the immune
system. It corresponds to the “Naturopathy” component (subcomponent within the green box called the
‘cross-domain recommendation applications”) within the well-being recommender system architecture
[36], as depicted in Fig. 8.1.

8.3.1 Collecting food ontologies: LOV4IoT-food ontology catalog
To deduce meaningful information from IoT data produced by health devices to monitor patients [14],
we need common sense knowledge. We searched on Google and Google Scholar for a set of specific
key phrases which (1) starts with ontology-based, (2) finishes with ontology, or (3) starts with semantic-
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based, knowledge-based, knowledge-graph, or related synonyms. For instance, for the food domain, the
key phrases are as follows: food, naturopathy, healthy diet, nutrients, cooking, etc.

Ontologies enable us to share and reuse knowledge by designing concepts and relationships within
a specific domain [37]. We intended knowledge catalogs to cover various topics (emotion, food, fitness,
obesity, sleep, stress, and depression) [36] relevant to IoT (in this chapter, we focused on food).

Most relevant scientific publications are classified in Table 8.1 when that information is provided:

• Ontology eases the reuse of the domain expertise already designed in previous projects. The col-
umn Ontology Availability (OA) explicitly describes if the ontology code is accessible online (URIs
mentioned in the publication or after corresponding with the authors).

• Sensors used and measurement type (e.g., RFID embedded on food).
• The reasoning employed to analyze data. Sometimes, rules can be reused to interpret data in other

applications using the same data efficiently. Reasoning column within Table 8.1 references the rea-
soning mechanism employed within the projects.

• Cited publications enriched our domain knowledge repository with scientific papers to prove the
veracity of facts mentioned in our recommender system.

Our knowledge repository is the result of a continuous enrichment of the LOV4IoT knowledge
repository [38] since 2012 (that references almost 800 ontology-based IoT projects). It is an innova-
tive solution to share the Systematic Literature Review (SLR) (SLR guidelines [39]) as a tool rather
than a survey paper. The repository is continuously updated, inspired from Agile software development
methodologies, to enrich it with additional domains, use cases and knowledge. We take into considera-
tion the latest publications, surveys, and we carefully analyze their reference sections that can introduce
complementary topics and key scientific publications.

Food knowledge catalog: The food knowledge base, which classifies a set of ontologies describing
food, recipes, etc. (see Table 8.2 for demo URLs). It references more than 53 ontology-based projects
(in October 2021), as referenced in Table 8.1. The ontologies available online are classified on the top,
then the ontologies are classified by the year of publications. The food ontology data set provides a
subset with only 12 ontologies, which shared their ontology code online for semiautomatic knowledge
extraction.

Visualizing Food Ontologies: To ease a quick discovery of the ontology content, the WebVOWL
tool [67] helps to visualize ontologies available within LOV4IoT-Food and that are preselected if they
can be loaded without errors. The set of issues while loading the ontology is described in [68] and shared
to the WebVOWL team. Listing 8.1 shows an example of ontology metadata required with WebVOWL
[67] for a better visualization. Best practices that encourage ontology quality and interoperability are
quickly explained in Section 8.3.4 and summarized in Table 8.3.

8.3.2 Naturopathy knowledge graph: extracting and integrating food ontologies
and data sets

The naturopathy knowledge graph is built from the set food ontologies mentioned in Table 8.1. Since the
ontology-based food projects were not focused on providing suggestions to boost the immune system,
we enrich our knowledge base with the content from a set of books about “alimentation as a third
medicine” [69] or “aliments to cure” [70].
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Table 8.1 Ontology-based food projects to design the integrated food knowledge base and rea-
soning engine. The ontologies available online are classified on the top, then the ontologies are
classified by year of publications.

Authors Year Project OA Reasoning
Dooley, Griffiths et al.
[17,40]

2018
2016

FoodOn – Universal Food Ontology � ✗

Peroni et al. [41] 2016 20 food ontologies (fish, honey, etc.) � ✗

Celdran et al. [42] 2016 Supermarket and location ontologies � �Semantic rules, SWRL
Gyrard et al. [43] 2015 Naturopathy ontology and data set � �Jena rule-based engine
Kolchin et al. [18] 2013 Food product ontology � ✗

Sabou et al. [44] 2009 SmartProducts: Food and recipe � �owl:Restriction rules
Calore, Pernici et al.
[45]

2007 Foodshop case study � �owl:Restriction rules

Gaia – Restaurant � �owl:Restriction rules
Tropical fruits – Tropical fruits � �owl:Restriction rules
– – Pizza � �owl:Restriction rules
– – Wine � �owl:Restriction rules
Mooney – Restaurant � ✗ No owl:Restriction rules
– – Beverage � ✗ No owl:Restriction rules
– 2000 Beer � ✗

Seneviratne et al. [23] 2021 Personal Health KG for diet ✗ �
Subramaniyaswamy
et al. [25]

2019 Personalized food recommendation ✗ �RS

Espin et al. [46] 2016 Nutrition Diet RS for elderly people ✗ �RS, SWRL rules, Pellet
Boulos et al. [12] 2015 Survey paper: Food ontologies for IoT ✗ ✗

Chi et al. [47] 2015 Disease dietary consultation system ✗ �Rule-based
Karim et al. [28] 2015 Personalized dietary RS for travelers ✗ �RS, SWRL, Pellet
Celik et al. [20] 2015 FoodWiki, mobile safe food consumption ✗ �> 30 SWRL rules, Pellet
Pizzuti et al. [48,49] 2014 Food track and traceability ontology ✗ �Pellet
Su et al. [50,51] 2014 Personalized fitness, diet plan, food ✗ �SPIN rules, SPARQLMotion
Tumnark et al. [52] 2013 Personalized dietary RS for weightlifting ✗ �RS, SWRL, Pellet, SQWRL
Chen et al. [53] 2013 Ontology-based diet RS ✗ �RS, Jena rule, fuzzy, knapsack
Curiel et al. [54] 2013 Users and restaurant ontologies ✗ �Jena OWL reasoner
Miao et al. [55] 2013 User preferences for personalized RS ✗ �Bayesian model, SWRL
Suksom et al. [56] 2013 Personalized food RS ✗ �RS, fuzzy inference
Yasavur et al. [57] 2013 Health, food, activity, beverage ✗ ✗

Vadivu et al. [58] 2010 Natural food, chemicals and diseases ✗ ✗

Fudholi et al. [59,60] 2009 Menu RS ✗ RS, SWRL, SQWRL, fuzzy
Gu et al. [61] 2009 Fridge, food, smart home, RFID ✗ – Cannot access any PDF
Snae et al. [33] 2008 FOODS, food ontology ✗ ✗

Sachinopoulou et al.
[62]

2007 Personal health and wellness ontology ✗ – Cannot access any PDF

Li et al. [63] 2007 Food ontology for diabetes diet care ✗ – Cannot access any PDF
Chen et al. [64] 2006 Cocktail (drink) RS and mood ✗ �DL RACER OWL reasoner, RS
Ribeiro et al. [65] 2006 Ontology for cooking ✗ ✗

Cantais et al., [21] 2005 Food/diet/product for diabetes control ✗ �Ontology reasoners (Racer,
Pellet)

OpenFoodFacts [66] – Food products from around the world ✗ ✗

Legend: Recommender System (RS), Ontology Availability (OA).
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1 <owl:Ontology rdf:about="&naturopathy;">
2 <rdf:type rdf:resource="http://purl.org/vocommons/voaf#Vocabulary"/>
3 <dc:title xml:lang="en">The naturopathy ontology</dc:title>
4 <dc:description xml:lang="en">The naturopathy ontology describes relationships between foods, their nutrients, their

color, the mood, the diseases, the diets and the allergies.</dc:description>
5 <dc:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Amelie Gyrard</dc:creator>
6 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021−10−10</dcterms:modified>
7 <dcterms:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2013−09−12</dcterms:issued>
8 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">1.2</owl:versionInfo>
9 <vs:term_status>Work in progress</vs:term_status>

10 <vann:preferredNamespacePrefix>naturopathy</vann:preferredNamespacePrefix>
11 <vann:preferredNamespaceUri>http://sensormeasurement.appspot.com/naturopathy#</vann:preferredNamespaceUri>
12 <foaf:homepage>http://lov4iot.appspot.com/?p=lov4iot−food</foaf:homepage>
13 </owl:Ontology>

Listing 8.1: Naturopathy ontology metadata required with WebVOWL for a better visualization.

FIGURE 8.2

The naturopathy data set referenced on the Linked Open data (LOD) cloud.

The naturopathy ontology is referenced on the LOV4IoT-Food ontology catalog and the natur-
opathy data set is referenced on the Linked Open data (LOD) cloud as depicted in Fig. 8.2 (see
Table 8.2 for URLs).

Mapping with other ontologies and knowledge graphs: Food-related knowledge is mapped as
much as possible with the DBpedia ontology (rdf:type Food) and DBpedia resources, as demonstrated
in Listing 8.2.

Knowledge extraction from food ontologies: We semiautomatically analyzed the ontologies with
Natural Language Processing techniques (NLP): (1) ontology code (RDF/XML), and (2) scientific
publications describing the ontologies. When the ontologies can be processed, we selected a set of
specific keywords (e.g., vitamin) to compare knowledge provided by ontologies.
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1 <naturopathy:Food rdf:about="RoyalJelly">
2 <rdfs:label xml:lang="fr">Royal Jelly</rdfs:label>
3 <rdfs:label xml:lang="en">Gelee royale</rdfs:label>
4 <rdf:type rdf:resource="&dbpedia_ont;Food"/>
5 <owl:sameAs rdf:resource="http://dbpedia.org/resource/Royal_jelly"/>
6 <m3:isRecommendedFor rdf:resource="BoostImmuneSystem"/>
7 <rdfs:comment xml:lang="en">Royal Jelly is recommended when tired and to boost the immune system.</rdfs:comment>
8 <txn:hasImage rdf:resource="http://sensormeasurement.appspot.com/images/FoodNaturopathyRS/RoyalJelly.png"/>
9 </naturopathy:Food>

Listing 8.2: Food-related knowledge is mapped to DBpedia.

FIGURE 8.3

Knowledge extraction architecture from food ontologies.

From a set of publications on food ontology-based projects, we extract knowledge such as which
sensors are employed, which reasoning mechanisms are used to interpret sensor measurements, is there
an ontology available and reusable, etc. (as depicted in Fig. 8.3).

Ontologies are compared with each other to extract a common pattern to later generate a unified and
federated food knowledge graph. As an example, we automatically retrieve key phrases (see Fig. 8.4)
if they mention food related keywords such as: “protein,” “food,” “product,” “additive,” “ingredient,”
“nutrient,” “calorie,” “fat,” “fish,” “oil,” “meat,” “vegan,” “vegetarian,” “recipe,” “weight,” “age,” “sex,”
“height,” “diet,” “patient,” “person,” “fiber,” “vitamin,” “carbohydrate.” Since there is no corpus for such
tasks, we have semimanually built the gold data set as depicted in Fig. 8.4. Each column corresponds
to an ontology, and each row represents a food-related term.

We prioritize terms relevant to describe why food type and its composition (e.g., Vitamin C) is
good to boost the immune system.
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FIGURE 8.4

Food gold data set: knowledge extraction from food ontologies that highlight the need to collect and integrate
knowledge from complementary ontologies.

FIGURE 8.5

Rule discovery for food with SLOR-food.

8.3.3 Knowledge-based immune system suggestion: ontology-based food
recommendation to boost the immune system

Food reasoning discovery with SLOR-Food: Rules are collected and can be defined in our recom-
mendation system to personalize food suggestions according to patient restrictions such as diets and
allergies, as depicted in Fig. 8.5.
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Our knowledge-based recommender system [71] integrates a set of ontologies (as summarized in
Table 8.1), data sets and other sources such as scientific publications, and books related to the natur-
opathy domain.

The recommender system provides suggestions by using the property <m3:isRecommendedFor

rdf:resource="AAA"/> as introduced in Listing 8.2. We automatically retrieve foods that boost the
immune system with the property <m3:isRecommendedFor rdf:resource="BoostImmuneSystem"/>.

We designed the Naturopathy recommender system to boost the immune system: Natural prod-
ucts, such as herbs, prebiotic, probiotics, and selective medical diets, help for a healthy lifestyle [72].
The “Clinical naturopathy: an evidence-based guide to practice” book [72] addresses numerous dis-
eases and syndromes (e.g., food allergy/intolerance, asthma, hypertension, stroke, anxiety, depression,
insomnia). Additional fields, such as aromatherapy [73,74] are highly relevant.

The naturopathy application is extended with explicit links to describe food boosting the immune
system (some explanations and figures are hereafter, otherwise in Appendix 8.A):

• Food suggestion to boost the immune system (Fig. 8.6). Numerous ingredients and nutrients that
boost the immune system can be retrieved for various reasons explained hereafter (e.g., ingredients
that contain Vitamin C).

• Food with vitamins to boost the immune system: Vitamin A (Fig. 8.9), Vitamin C (Fig. 8.7), Vitamin
D (Fig. 8.10), and Vitamin E (Fig. 8.11).
Vitamins such as vitamin C are well known to boost the immune system, as highlighted in Fig. 8.7.
“Vitamin C is one of the strongest vitamins to increase immunity. Foods that have Vitamin C like
hot peppers, have more Vitamin C than oranges. Many fruits (e.g., kiwi, papaya, strawberry) and
vegetables (e.g., broccoli) are packed with Vitamin C.”8 Similarly, other vitamins such as Vitamin
A (Fig. 8.9), Vitamin D (Fig. 8.10), and Vitamin E (Fig. 8.11) are excellent to boost the immune
system.
“Foods that are high in carotenoids compounds are: carrots, sweet potatoes, pumpkin, cantaloupe,
and squash. The body turns carotenoids into vitamin A, that have an antioxidant effect to help
strengthen the immune system against infection.”9 (Fig. 8.9).
“Vitamin D regulates the production of a protein that selectively kills infectious agents, including
bacteria and viruses. Vitamin D alters the activity and number of white blood cells, known as T 2
killer lymphocytes, which can reduce the spread of bacteria and viruses. Winter-associated vitamin
D deficiency—from a lack of sun-induced vitamin D production—can weaken the immune system,
increasing the risk of developing viral infections that cause upper respiratory tract infections.”10

(Fig. 8.10).
“Vitamin E is a powerful antioxidant that helps your body fight off infection. Almonds, peanuts,
hazelnuts, sunflower seeds, spinach, and broccoli are all high in vitamin E.”11 (Fig. 8.11).

8 https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-
system-during-the-coronavirus.
9 https://health.clevelandclinic.org/eat-these-foods-to-boost-your-immune-system/.
10 https://edition.cnn.com/2020/03/25/health/immunity-diet-food-coronavirus-drayer-wellness/index.html.
11 https://health.clevelandclinic.org/eat-these-foods-to-boost-your-immune-system/.

https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-system-during-the-coronavirus
https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-system-during-the-coronavirus
https://health.clevelandclinic.org/eat-these-foods-to-boost-your-immune-system/
https://edition.cnn.com/2020/03/25/health/immunity-diet-food-coronavirus-drayer-wellness/index.html
https://health.clevelandclinic.org/eat-these-foods-to-boost-your-immune-system/
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• Food with zinc to boost the immune system (Fig. 8.12). “Zinc reduces the length of a cold. Zinc
also has antiviral properties to prevent coronavirus entry into cells and decrease the severity of the
virus.”12 (Fig. 8.12).

• Food with probiotics to boost the immune system (Fig. 8.13). “Probiotics like yogurt keep your gut
healthy, which is directly tied to your immune system.”13 (Fig. 8.13).

• Food with beta carotene to boost the immune system (Fig. 8.14). “Beta carotene gets converted to
vitamin A, which is essential for a strong immune system. It helps antibodies respond to toxins and
foreign substances. Sweet potatoes, carrots, mangoes, apricots, spinach, kale, broccoli, squash, and
cantaloupe contain beta carotene.”14 (Fig. 8.14).

• Food with sulfur to boost the immune system (Fig. 8.15). For instance, “Garlic contains Allicin
which breaks down into sulfur containing compounds boost white blood cells, an important part of
the immune system.”15

• Food or aromatherapy reducing stress (Fig. 8.16), anxiety (Fig. 8.18), and depression (Fig. 8.17).
“Aromatherapy through inhalation optimizes the mood and reduces effects of anxiety, depression,
and stress” [74].

• Food fatigue, exhaustion, and tiredness (Fig. 8.19).
• Food reducing sleeping issues and insomnia (Fig. 8.20). For instance, Roman chamomille is rec-

ommended if there are sleeping issues/insomnia.
• Aromatherapy with essential oils boosts the immune system and clean the air (Fig. 8.21), based on

a research review published in 2021 [73] and books such as [74]. “Aromatherapy through inhalation
reduces physical disorders associated with immune system dysfunction” [74].

• Meditation and hypnosis videos to boost health. Techniques such as Mindfulness-Based Stress
Reduction (MBSR) from researchers such as Jon Kabat-Zinn [75,76] are scientifically proven with
a cohort of more than 18,000 patients, and specific research on mindfulness meditation benefits on
brain and the immune system with Jon Kabat-Zinn and Richard Davidson [77,78].

8.3.4 Evaluation
Technical evaluation: As a technical evaluation, the naturopathy data set is referenced on the Linked
Open data (LOD) cloud as explained above. We also synthesize 16 rules to disseminate ontology best
practices in Table 8.3 to encourage researchers to share more their food knowledge [68] to ease reusabil-
ity and better interoperability. For each rule, we provide examples of bad practices and best practices to
help beginners in their learning journey in a set of slides entitled “Step-by-step tutorial to improve the
ontology quality, dissemination, reuse.”16 This work is an enhancement of our previous work [79].

12 http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=
rss&utm_campaign=boost-your-immunity-through-nutrition.
13 https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-
system-during-the-coronavirus.
14 https://edition.cnn.com/2020/03/25/health/immunity-diet-food-coronavirus-drayer-wellness/index.html.
15 http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=
rss&utm_campaign=boost-your-immunity-through-nutrition.
16 Slides step-by-step tutorial to improve the ontology quality, dissemination, reuse, etc. Semantic Web Best Practices: https://
goo.gl/Rg4cGr.

http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=rss&utm_campaign=boost-your-immunity-through-nutrition
http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=rss&utm_campaign=boost-your-immunity-through-nutrition
https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-system-during-the-coronavirus
https://www.wptv.com/news/region-n-palm-beach-county/north-palm-beach/foods-to-eat-that-will-boost-your-immune-system-during-the-coronavirus
https://edition.cnn.com/2020/03/25/health/immunity-diet-food-coronavirus-drayer-wellness/index.html
http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=rss&utm_campaign=boost-your-immunity-through-nutrition
http://potentialenergytraining.com/2020/03/19/boost-your-immunity-through-nutrition/?utm_source=rss&utm_medium=rss&utm_campaign=boost-your-immunity-through-nutrition
https://goo.gl/Rg4cGr
https://goo.gl/Rg4cGr
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FIGURE 8.6

Food suggestions to boost the immune system.

FIGURE 8.7

Foods containing Vitamin C are beneficial to boost the immune system.

LOV4IoT ontology catalog evaluation has been evaluated since it comprises almost 800 ontology-
based IoT projects (in this chapter, we focus on food ontologies). The evaluation form and results are
available.17 The result encourages us to pursue the ontology classification work to cover more and more
domains.

17 http://lov4iot.appspot.com/?p=evaluation.

http://lov4iot.appspot.com/?p=evaluation
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Table 8.2 Set of online naturopathy demonstrators: ontology, data set, ontology catalog, rule
discovery, and full scenarios.

Tool name Tool URL
LOV4IoT-Food Ontology-based IoT Project
Catalog

http://lov4iot.appspot.com/?p=lov4iot-food

LOV4IoT-Food Web Service and Dumps (for
Developers)

http://lov4iot.appspot.com/?p=queryFoodOntologiesWS

SLOR-Food Rule Discovery http://linkedopenreasoning.appspot.com/?p=slor-food

Boost Immune System Full Scenarios http://sensormeasurement.appspot.com/?p=boostImmuneSystem

Naturopathy Full Scenarios http://sensormeasurement.appspot.com/?p=naturopathy

Naturopathy Data set http://sensormeasurement.appspot.com/dataset/naturopathy-dataset

Naturopathy Data set on LOD https://lod-cloud.net/dataset/Naturopathy

Naturopathy Ontology http://sensormeasurement.appspot.com/naturopathy#

FIGURE 8.8

Evaluation of food ontologies loadable with WebVOWL.

Challenges to automate tasks when dealing with ontologies are depicted in Fig. 8.8.18 If the ontolo-
gies are shared online, sometimes the ontologies can be loaded by tools (e.g., ontology visualization
tools or semantic web framework for ontology analysis).

18 Available online for better visibility: shorturl.at/ADIQY.

http://lov4iot.appspot.com/?p=lov4iot-food
http://lov4iot.appspot.com/?p=queryFoodOntologiesWS
http://linkedopenreasoning.appspot.com/?p=slor-food
http://sensormeasurement.appspot.com/?p=boostImmuneSystem
http://sensormeasurement.appspot.com/?p=naturopathy
http://sensormeasurement.appspot.com/dataset/naturopathy-dataset
https://lod-cloud.net/dataset/Naturopathy
http://sensormeasurement.appspot.com/naturopathy#
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Table 8.3 Ontology best practices: check list summary [68].

Rule number Description Difficulty
Rule 1 Finding a good ontology name *

Rule 2 Finding a good ontology name space **

Rule 3 Sharing your ontology online **

Rule 4 Adding ontology metadata **

Rule 5 Adding rdfs:label, rdfs:comment, dc:description *

for each concept and property

Rule 6 All classes start with an uppercase *

and properties with a lowercase.

Rule 7 Submitting your ontology to ontology catalogs **

Rule 8 Reusing and linking ontologies ***

Rule 9 Dereferenceable URI **

copy paste the name space URL of your ontology in a web browser to get the code

Rule 10 Checking syntax validator *

Rule 11 Adding ontology documentation *

Rule 12 Adding ontology visualization *

Rule 13 Improving ontology design ***

Rule 14 Improving dereferencing URI and content negotiation ***

Rule 15 Ontology can be loaded with ontology editors (e.g., Protege) **

Rule 16 Registering your ontology on prefix catalogs *

8.4 Conclusion and future work
We designed the naturopathy knowledge graph (ontology and data set) employed within a recommender
system to boost the immune system, called the Knowledge-based Immune System Suggestion (KISS).
The naturopathy knowledge graph acquires knowledge from more than 50 ontology-based food projects
that we classify within the LOV4IoT-Food ontology catalog. The naturopathy data set is referenced on
the Linked Open data (LOD) cloud. The LOV4IoT-Food ontology catalog supports researchers with:
(1) the Systematic Literature Survey, which is a time-consuming task and requires an eagerness to learn
and investigate existing projects, (2) FAIR principles to encourage researchers to share their repro-
ducible experiments by publishing online ontologies, data sets, rules, etc. The set of ontology codes
available online can be automatically processed; if the ontology code is not available, the scientific
publications describing the food ontologies are semiautomatically processed with Natural Language
Processing (NLP) techniques to feed the food reasoning engine to build the naturopathy recommender
system.

Short-term challenges: LOV4IoT is relevant for the IoT community. The results are encourag-
ing to update the data set with additional domains and ontologies. LOV4IoT leads to the AIOTI (The
Alliance for the Internet of Things Innovation) IoT ontology landscape survey form19 and analysis

19 https://ec.europa.eu/eusurvey/runner/OntologyLandscapeTemplate.

https://ec.europa.eu/eusurvey/runner/OntologyLandscapeTemplate
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result,20 executed by the Standard WG—Semantic Interoperability Expert Group. It aims to help in-
dustrial practitioners and nonexperts to answer those questions: Which ontologies are relevant in a
certain domain? Where to find them? How to choose the most suitable? Who is maintaining and taking
care of their evolution?

Mid-term challenges: Automatic knowledge extraction from ontologies and scientific publication
describing the ontology purpose is challenging, as highlighted in our AI4EU Knowledge Extraction for
the Web of Things (KE4WoT) Challenge. The challenge encourages to reuse the expertise designed
by domain experts and make the domain knowledge usable, interoperable, and integrated by machines.
We released the set of ontologies, as dumps, web services, tutorials, and make them available for the
challenge.

Long-term challenges: To improve the veracity and the evaluation of the recommender, involv-
ing domain experts such as dietitians, nutritionists, naturopaths, Traditional Chine Medicine doctors,
Ayurvedic doctors, etc. would enhance the naturopathy knowledge graph, by proving more of the facts.

The recommender system can be extended by considering additional domains such as aromatherapy
with essential oils, Bach Flower Remedies, mindfulness, and activities such as Yoga, etc. Emphasis
on the emotional aspect will be done (e.g., fear, pessimism, sadness) since it impacts the immune
system. We investigated psycho-physiology [80] research field to prove such facts. Collecting emotion
ontologies has been investigated within the ACCRA project (robots for healthy ageing that provide
well-being applications) [81].

8.5 Disclaimer
It is obvious that the World Health Organization (WHO) advice (e.g., for COVID-19) must be followed
as well.

Appendix 8.A Demonstrators
Figs. 8.9–8.21 have been described in the scenarios from Section 8.3.3.

20 https://bit.ly/3fRpQUU.

https://bit.ly/3fRpQUU
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FIGURE 8.9

Food containing Vitamin A are beneficial to boost the immune system.

FIGURE 8.10

Food containing Vitamin D are beneficial to boost the immune system.
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FIGURE 8.11

Food containing Vitamin E are beneficial to boost the immune system.

FIGURE 8.12

Food containing zinc are beneficial to boost the immune system.
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FIGURE 8.13

Food containing probiotics are beneficial to boost the immune system.

FIGURE 8.14

Food containing beta carotene are beneficial to boost the immune system.
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FIGURE 8.15

Food containing sulfur are beneficial to boost the immune system.

FIGURE 8.16

Food reducing stress.
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FIGURE 8.17

Food reducing depression.

FIGURE 8.18

Food suggestion to reduce anxiety.
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FIGURE 8.19

Food suggestion to reduce fatigue.

FIGURE 8.20

Food suggestion to encourage better sleep.

FIGURE 8.21

Aromatherapy (e.g., essential oils) to boost the immune system and clean the air.
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9.1 Introduction
Assisting people to stay independent at home and to decrease hospital costs but also social isolation for
the (elderly) people is getting more attention. e-Health is a term used among others such as telehealth,
m-Health, telemedicine, digital health, health IT [1]. The integration of heterogeneous technologies and
devices require an interoperable solution to describe devices and data exchanged for preventive health
and well-being.

Preventive health can be achieved by considering four main topics (see Fig. 9.1): (1) physical ac-
tivity, (2) healthy diet, (3) emotional management with positive psychology [2] to manage our emotions
to improve stress management, and (4) sleep management. The environment can affect health as well;
it is called epigenetic [3], and has been demonstrated with twins: twins share the same DNA and a
different environment lifestyle can change health. Wellness defines a healthy lifestyle, by taking into
consideration mind, body, and spirit as a whole for an overall feeling of well-being. Well-being is the
state of being comfortable, healthy, or happy.

Physical activities: Activities such as Yoga [4], Taichi [5], Qigong [6] benefits have been demon-
strated. Tai Chi helps with depression, pulmonary disease, balance disorders, Parkinson’s disease,
cardiovascular health, osteoporosis, chronic pain, and cancer as it is scientifically proven by researchers
at the Osher Center for Integrative Medicine at the Harvard Medical School [5]. Qigong improves well-
being and reduces anxiety, stress, and depression [51]. Practicing sports will help reduce stress, enhance
better sleep, etc. A sport is more and more recommended for a healthy lifestyle, to reduce stress, im-
prove well-being, etc. More and more companies are creating new devices to support drills, such as
smartwatches (e.g., Fitbit), etc. [7].

Affective Science (e.g., emotion): Martin Seligman created the Positive Psychology Center [2] at
the University of Pennsylvania’s Department of Psychology. He focuses on positive psychology and
encourages well-being rather than reducing ill-being for better physical and mental health. Rosalind
Picard [8] founded the Affective Computing Research Group at the MIT Media Lab and is the co-
founder of the startups, Affectiva (facial and vocal emotion recognition) and Empatica (wearable to
detect epilepsy crisis). Standford’s research team1 is also researching affective science. Daniel Gole-
man’s research [9] focuses on emotional intelligence. There is also a new trend to improve well-being
at work with “Happiness Manager,” “Chief Happiness Officer,” etc.

Healthy Diet: Seignalet et al. [10] emphasize that healthy food is considered as a third medicine as
explained in his book.

Sleep and Relaxation: Benefits of meditation have already been proven with Davidson’s affective
neuroscience’s research [11,12], along with Paul Eckman, Matthieu Ricard [13,14], and Allan Wallace
[15,16].

1 https://psychology.stanford.edu/research/department-areas/affective-science.

https://psychology.stanford.edu/research/department-areas/affective-science
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FIGURE 9.1

Healthy Lifestyle Venn Diagram: (1) physical activity, (2) healthy diet, (3) emotional management with positive
psychology, and (4) sleep management.

To achieve preventive health, IoT technologies can be employed. IoT for a healthcare survey [17]
provides several IoT-healthcare applications: (1) glucose level sensing, (2) ECG monitoring, (3) blood
pressure monitoring, (4) body temperature monitoring, (5) oxygen saturation monitoring, (6) reha-
bilitation systems, (7) medication management, (8) wheelchair management, (9) imminent healthcare
solutions, and (10) healthcare solutions using smartphones. Internet of things for Healthcare [17] does
not cover enough fitness benefits.

We address the following research questions (RQ):

• RQ1: What are the limitations of the existing ontology-based health IoT projects? Can we reuse the
domain expertise designed in past projects?

• RQ2: What are the sensors relevant to the health domain? Are there standardized sensor dictionaries
for the health domain? Are there ontology standards for the health domain?

• RQ3: What are the rules and reasoning mechanisms to interpret health sensor data to help developers
faster design their IoT-based health applications?

• RQ4: How to prove the veracity of the reasoning engine?

The main contributions of this paper are:
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• C1: A deep investigation of the ontology-based health projects shared though the LOV4IoT-Health
ontology catalog; it addresses RQ1 in Section 9.2.1.

• C2: Alignment of the health sensor dictionary with the ETSI (European Telecommunications Stan-
dards Institute) SmartM2M SAREF ontology and its extensions: SAREF for eHealth ageing Well
(SAREF4EHAW), and SAREF for Wearables (SAREF4WEAR); it addresses RQ2 in Section 9.3.1.

• C3: The reasoner retrieves knowledge to design health use cases; it addresses RQ3 in Section 9.3.4.
• C4: Provenance to keep track of the knowledge designed by domain experts is explicitly encoded

in the ontology catalog and rule data sets to prove the veracity of the reasoning engine; it addresses
RQ4 in Section 9.3.5.

• C5: Compliant with Standardization: Results are promoted within the ISO/IEC 21823-3 IoT se-
mantic interoperability [18], and the AIOTI WG Standardization2 Semantic Interoperability Expert
Group [19,20] where the reasoner is taken as a baseline [21]. SAREF designers are also involved
within AIOTI WG. Furthermore, semantic web technologies (RDF, RDFS, OWL, SPARQL) em-
ployed are supported by the W3C standard.

Structure of the paper: Related work on health ontology catalogs, standards such as ETSI Smart
M2M SAREF4EHAW, and health knowledge graphs are described in Section 9.2. The sensor dictionary
for health, the knowledge discovery, and its reasoner are described in Section 9.3. ETSI SmartM2M
SAREF-compliant health scenarios are introduced in Section 9.4; the classification of the source of
the knowledge to prove the veracity of our scenarios is included. Those results have impact in projects
such as the ACCRA European project [22]. The ETSI SmartM2M SAREF limitations are summarized
in Section 9.5. The paper concludes and envisions future work in Section 9.6.

9.2 Related work: ontology-based IoT project catalog for health
This section introduces related work on health ontology catalogs in Section 9.2.1, standards such as
ISO or ETSI Smart M2M SAREF4EHAW ontology in Section 9.2.2, and health knowledge graphs in
Section 9.2.3.

9.2.1 Ontology-based IoT project catalog for health with LOV4IoT-health
We collected and analyzed the state of the art to enrich our ontology-based IoT health project knowledge
base (LOV4IoT-Health is summarized in Table 9.5). Other ontology catalogs such as BioPortal [23] and
Linked Open Vocabularies (LOV) [24] are not focused on IoT-based health applications. LOV4IoT-
Health is more focused on the ontologies and related scientific publications, sensors, and reasoning
mechanisms employed as detailed in Table 9.5, which are not covered by other ontology catalogs. Our
survey is the result of a continuous enrichment of the LOV4IoT ontology catalog [25] since 2012, deal-
ing with more and more expertise and synonyms (e.g., emotion, affective science, health, well-being,
fitness, etc.). We provide tools to support the reuse of the survey outcome (e.g., dump of ontology code,
web services, and web-based ontology catalog) and release them for the AI4EU Knowledge Extraction

2 https://aioti.eu/aioti-wg03-reports-on-iot-standards/.

https://aioti.eu/aioti-wg03-reports-on-iot-standards/
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for the Web of Things Challenge.3 Meanwhile, we are aware of Systematic Literature Review (SLR)
guidelines such as [26]. The survey on IoT-based health ontologies is also reused within the reasoning
discovery explained hereafter; both are frequently updated (see Table 9.2 for URLs). Manual extraction
and semiautomatic analysis [27,28] have been done to extract knowledge (see Section 9.3.3).

9.2.2 Standards: ISO and ETSI SmartM2M
We have investigated standards such as ISO 13606-5:2010 Health Informatics – Electronic Health
Record communication standards, and ETSI SmartM2M SAREF4EHAW for e-Health/Aging-well on-
tology.

9.2.2.1 ETSI SmartM2M SAREF4EHAW for e-Health/Aging-well
Among all ontologies collected, analyzed, and summarized in Table 9.5 and Section 9.2.1, we selected
the SAREF ontology since it is supported by the ETSI SmartM2M standard and the European Commis-
sion. Other ontologies are reused to extract knowledge from domain experts as explained in Section 9.3.
The ETSI Smart M2M SAREF4EHAW ontology [29] aims to cover the following use cases: (1) el-
derly at home monitoring and support, (2) monitoring and support of healthy lifestyle for citizens,
(3) Early Warning System (EWS) and cardiovascular accidents detection. The use cases are classified
into the following categories: (1) daily activity monitoring, (2) integrated care for older adults under
chronic conditions, (3) monitoring assisted persons outside the home and controlling risky situations,
(4) emergency trigger, (5) exercise promotion for fall prevention and physical activeness, (6) cognitive
simulation for mental decline prevention, (7) prevention of social isolation, (8) comfort and safety at
home, and (9) support for transportation and mobility.

SAREF deliverables reviewed standards (IEEE, ETSI, SNOMED International, OneM2M), Al-
liances (AIOTI), IoT platforms, and European projects and initiatives, etc.

SAREF4EHAW investigated the following ontologies: (1) WSNs/measurement ontologies: OGC
(Open Geospatial Consortium) Observations and Measurements (O&M), Sensor Model Language
(SensorML), Semantic Sensor Web (SWE): W3C and OGC SOSA (Sensing, Observation, Sampling,
and Actuation), and W3C SSN (Semantic Sensor Network). NASA QUDT (Quantities, Units, Dimen-
sions, and Types). (2) e-Health/Ageing-well domain main ontologies: ISO/IEEE 11073 Personal Health
Device (PHD) standards, ETSI SmartBAN Reference Data Model and associated modular ontologies,
ETSI SmartM2M SAREF4EHAW, FHIR RDF (Resource Description Framework), FIESTA-IoT on-
tology to support the federation of testbeds, Bluetooth LE profiles for medical devices proposed by
zontinua, MIMU-Wear (Magnetic and Inertial Measurement Units) ontology, and Active and Healthy
Aging (AHA) platform wearables’ device ontology. SAREF has been mapped with oneM2M base on-
tology in 2017.

SAREF ETSI TR 103 509 [29] defines 43 final ontological requirements and 59 additional service
level assumptions of the e-Health/Aging-well domain (use cases included) are presented. For instance,
the ontology will describe concepts to describe ECG devices.

3 https://www.ai4eu.eu/ke4wot.

https://www.ai4eu.eu/ke4wot
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9.2.2.2 ISO 13606-5:2010 health informatics – electronic health record communication
standards

ISO 13606-5:2010 Health Informatics – Electronic Health Record communication standard4 de-
fines an architecture for exchanging an Electronic Health Record (EHR) describing the patient’s health
status and to ease communication between EHR systems (e.g., clinicians applications, decision support
systems).

9.2.3 Health knowledge graphs
We review health KGs and categorize them based on their interpolation with statistical and learning-
based approaches in [30]. We explain the challenges in integrating heterogeneous models to maintain a
PHKG utilizing various modalities. In [30], the “Summary of (Health) Knowledge Graph (KG) using or
not Machine Learning (ML)” table provides references and summaries of the KG scientific articles. It
also cites nonhealth KG such as Schema.org (designed by significant internet companies) to understand
how KGs work. This literature analysis shows that there is no reasoner inferring abstraction from sensor
data sets and later combining them with multidisciplinary external domain knowledge (e.g., health on-
tologies). Only two papers integrate KG and ML technologies for health: Shi et al. [31] and Rotmensch
et al. [32]. Le Phuoc et al. [33] is the only work addressing IoT data, but not for the health use case.
None of those KGs discusses the challenges mentioned above, and hence none is appropriate for use.

9.3 Knowledge discovery and reasoning for preventive health and
well-being

The sensor dictionary for health is described in Section 9.3.1, ontology visualization in Section 9.3.2,
knowledge extraction from ontologies and scientific publications in Section 9.3.3, and the health rea-
soner in Section 9.3.4.

9.3.1 ETSI SmartM2M SAREF-compliant semantic sensor health dictionary
Sensor Dictionary for Health and Well-Being: We built a sensor dictionary for the health domain
compliant with standards such as ETSI SmartM2M SAREF. We designed a pattern to classify sensors
for the health domain: for each sensor, we provide the produced measurements and the associated unit;
we also deal with synonyms. Furthermore, we referenced for each sensor the source of knowledge using
it (e.g., past projects referenced within the ontology-based IoT project catalog, see Section 9.2.1 and
Table 9.5), and reasoning mechanisms to interpret health sensor data (see the rule discovery project in
Section 9.3.4).

The ETSI SmartM2M SAREF-compliant sensor health dictionary is provided as a web service:
http://linkedopenreasoning.appspot.com/saref/subclassOf/?sarefCoreClassName=Sensor&m3
ApplicationDomain=HealthM2MDevice&format=xml or can be hidden within Graphical User Inter-
face (GUI) (see Section 9.3.4).

4 http://www.en13606.org/information.html.

http://linkedopenreasoning.appspot.com/saref/subclassOf/?sarefCoreClassName=Sensor&m3ApplicationDomain=HealthM2MDevice&format=xml
http://linkedopenreasoning.appspot.com/saref/subclassOf/?sarefCoreClassName=Sensor&m3ApplicationDomain=HealthM2MDevice&format=xml
http://www.en13606.org/information.html
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FIGURE 9.2

Knowledge extraction from health ontologies.

ETSI SmartM2M SAREF-Compliant Semantic Annotation: The sensor dictionary is compliant
with the terms employed by SAREF when possible, as illustrated in Table 9.3. The limitations of ETSI
SmartM2M SAREF are summarized in Section 9.5. Sensor health data sets (e.g., JSON, XML) follow
the SenML format5 to represent sensor measurement, its value, its unit, and its timestamp. Available
demonstrators are providing code examples (see Table 9.2). A simple rule repository for the semantic
annotation is already available such as if “t” or “temp” or “temperature” is used and located on the
person; it probably is a body temperature and will be annotated following the dictionary mentioned
above, which is implemented as an ontology.

9.3.2 Ontology visualization for preventive health and well being
To ease a quick discovery of the ontology content, the WebVOWL tool [34] helps to visualize ontologies
available within LOV4IoT-Health (introduced in Section 9.2.1 and Table 9.5) and that are preselected
if they can be loaded without errors. The set of issues while loading the ontology is described in [35]
and shared to the WebVOWL team.

9.3.3 Semi-automatic knowledge extraction from preventive health and well being
ontologies

We semiautomatically analyzed the ontologies with Natural Language Processing techniques (NLP):
(1) ontology code and (2) scientific publications describing the ontologies.

From a set of publications on IoT health ontology-based projects, we extract knowledge such as
which sensors are employed, which reasoning mechanisms are used to interpret sensor measurements,
and is there an ontology available and reusable, etc. (as depicted in Fig. 9.2).

5 https://tools.ietf.org/html/rfc8428.

https://tools.ietf.org/html/rfc8428
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FIGURE 9.3

Semiautomatic knowledge extraction from health ontologies (https://bit.ly/2ZezSGG).

9.3.3.1 Extracting specific terms from ontology code
We semiautomatically compare existing health ontologies with each other. The main goal is to extract a
common pattern to later generate a unified and federated personalized health knowledge graph [30,36].
We focus on health sensors that can be employed for patient monitoring. Sensor-related terms are later
included in the sensor dictionary (Section 9.3.1) to be later associated with reasoning mechanisms as
mentioned in Section 9.3.4. As an example, we automatically retrieve key phrases (see the second
column in Fig. 9.2) if they mention health and sensor related keywords such as: “person,” “patient,”
“blood pressure,” “temperature,” “heart rate,” “glucose,” “sp02,” “oxygen,” “respiratory rate,” “skin
conductivity,” “sensor,” “device,” “humidity,” “ecg,” “ekg,” “activity.” The entire document of health
concept knowledge extraction is available.6

More sophisticated knowledge extraction methodologies that have been applied to other domain
ontologies such as smart home, smart cities, weather, and transportation in [27,28], could be applied
to health ontologies. Knowledge from scientific publications describing ontologies as well is used.
Automatic rule extraction from the ontology code is available in Noura et al. [37], and semiautomatic
knowledge extraction from ontologies in Fig. 9.3.

9.3.3.2 Extracting knowledge from scientific publications
To accelerate the investigation of ontology-based health projects, we collect scientific publications

(see Fig. 9.2) with the set of criteria that we are interested in:
• Are ontology URLs available within the scientific article? (as described in Algorithm 2). Frequently,

URLs are missing. Authors have been contacted to encourage them to follow FAIR principles to
release ontology codes and we enriched the ontology code data set when receiving positive answers.
LOV4IoT-Health collected 79 ontology-based projects; only 22 are sharing their ontologies online
as of October 2021 (see Table 9.2 for demo URL). Other ontology-based projects are referenced in
LOV4IoT-Health since they provide knowledge about sensors and reasoning mechanisms employed
and described within their paper. Unfortunately, the ontologies cannot be automatically processed
yet since they are not accessible.

• Are there UML diagrams describing the ontology architectures? We retrieve captions of figure and
table captions.

6 https://bit.ly/2ZezSGG.

https://bit.ly/2ZezSGG
https://bit.ly/2ZezSGG
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• Which sensors are employed for the health domain? We defined a list of keywords to find them in
the scientific paper and also within the ontology code. As an example, we automatically retrieve key
phrases if they mention health and sensor related keywords such as: “heart beat,” “heart rate,”
“body temperature,” “blood glucose,” “blood sugar level,” etc.

• Are there reasoning mechanisms and already defined rules to interpret health sensor data to be
employed by smart IoT-based health applications? We defined a list of keywords to find them
in the scientific papers. As an example, we automatically retrieve key sentences if they mention
reasoning-related keywords such as: “jena owl reasoner,” “fact++,” “hermit,” “racer,” “pellet,”
“rule,” “reasoning,” “logic-based,” “infer,” “OWL description logic,” etc.

• Does the reference section provide more publications to investigate? We enrich our scientific publi-
cation data set accordingly (e.g., LOV4IoT-health ontology catalog). The methodology that updates
the LOV4IoT ontology catalog is detailed in Algorithm 1.

We used the Apache OpenNLP7 library for NLP. We split the PDF file with classes such as Sen-
tenceDetectorME, SentenceModel and use our list of specific keywords to automate our manual tasks.

Algorithm 1 Updating the Ontology Catalog with Additional Health Knowledge by Crawling the Web
or Scientific Libraries.

1: Procedure: MyProcedure–
Input: Keyphrases (e.g., “smart health,” “hear beat sensor,” “health,” “Electronic Health Records
(EHR) Ontology,” "wearable,” “dementia,” “diabetes,” “Ambient Assisted-Living (AAL),” “remote
monitoring for healthcare” + (“ontology” OR “reasoning” “rules”))
Output: list of scientific papers in PDF to analyze—health ontology catalog
FOR all papers
IF the paper talks about list of ontology-based health key phrases and sensors referenced in our
health dictionary THEN add the paper to the list of papers to analyze

IF the paper has ontology code example or screenshot (OWL, RDF, RDFS) THEN save the
ontology code (to be later automatically analyzed)

IF potentialURLOntology(String URL) THEN query the URL and save the ontology code

IF we access OWL/RDF/RDFS ontology code THEN save the ontology in a repository

Check URL related keywords such as “http:,” “https://”
(potential URL for the ontology)

IF the paper talks about reasoning mechanisms (e.g., semantic web rule language THEN extract
the paragraph, picture, table, etc.

IF the paper has rule patterns (IF THEN ELSE, ?X, ?Y ->?Z) THEN extract the paragraph, picture,
table, etc.

7 https://opennlp.apache.org/.

https://opennlp.apache.org/
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Algorithm 2 Finding an ontology URL in the scientific publication.
Procedure: MyProcedure–
Input: PDF file (e.g., scientific publication, deliverable)

Split the file into sentences

For each sentence

if sentence contains “.owl” OR starts with ("http://" OR "www." OR "https://") OR contains “#” at
the end of the URL then

end if
Output: the list of sentences with URLs (list_URLs)

FIGURE 9.4

Subset of the Sensor-based Linked Open Reasoning (S-LOR) for the health domain retrieving projects and
rules using specific sensors.

9.3.3.3 Usage of semiautomatic extraction within reasoning demonstrators
We semiautomatically extracted sensors and reasoning employed within ontology-based health projects
to design the health sensor dictionary. The sensor dictionary is implemented as an ontology,8 and is used
within demonstrators such as SLOR-Health to easily retrieve sensors for the health domain and reason-
ing mechanisms for each sensor (see the list of health sensor on the left in Fig. 9.4). Such demonstrators
are later used to design end-to-end scenarios.

8 http://sensormeasurement.appspot.com/?p=m3.

http://sensormeasurement.appspot.com/?p=m3


9.3 Knowledge discovery and reasoning for preventive health and well-being 181

9.3.4 Knowledge discovery and reasoning for preventive health and well-being
(S-LOR health)

The sensor health dictionary described in Section 9.3.1 and depicted in Table 9.3 and Table 9.4 is
employed within the health rule discovery [22] (see Table 9.2 for URL). Each sensor for the health
domain can be automatically retrieved using SPARQL queries; the sensor dictionary is displayed in
Fig. 9.4 and Fig. 9.5 (on the left part), and the content shown on the GUI is from Table 9.5 (on the right
part).

9.3.5 Keeping track of provenance metadata
Provenance: To keep track of the source of knowledge, we add explicitly this information within
the rule data set and LOV4IoT RDF data sets as shown in Listing 9.1, by using the W3C PROV-O
ontology http://www.w3.org/ns/prov#. For instance, prov:hadPrimarySource keeps track of the source
by providing the URL of the scientific publication mentioning the rule or reasoning mechanism.

1 <m3:Rule rdf:about="LowSPO2Hristoskova2014Health">
2 <rdfs:label xml:lang="en">LowSPO2, IF m3:SPO2 LESS THAN 90 m3:Percent THEN LowSPO2</rdfs:label>
3 <rdfs:comment xml:lang="en">Ontology−driven monitoring of patient’s vital signs enabling personalized medical

detection and alert [Hristoskova, Sakkalis et al. 2014]</rdfs:comment>
4 <prov:hadPrimarySource rdf:resource="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926628/"/>
5 <m3:ruleUsingM2MDevice rdf:resource="&m3;PulseOxymeter"/>
6 <m3:fromM2MApplication rdf:resource="&lov4iot;Hristoskova2014Health"/>
7 <m3:hasUrlRule rdf:resource="&lorHealthSPO2;"/>

Listing 9.1: Adding provenance metadata using the W3C PROV ontology.

1 <dcat:Dataset rdf:about="http://linkedopenreasoning.appspot.com/dataset/rule−dataset">
2 <dc:title xml:lang="en">RDF distribution of the rule dataset</dc:title>
3 <dc:description xml:lang="en">RDF distribution of the rule dataset. </dc:description>
4 <versionInfo rdf:datatype="&xsd;decimal">5.4</versionInfo>
5 <dcterms:modified rdf:datatype="&xsd;date">2021−08−08</dcterms:modified>
6 <dcterms:issued rdf:datatype="&xsd;date">2013−01−01</dcterms:issued>
7 <rdfs:comment xml:lang="en">RDF distribution of the rule dataset.</rdfs:comment>
8 <vann:preferredNamespacePrefix>rule−dataset</vann:preferredNamespacePrefix>
9 <dc:creator xml:lang="en">Amelie Gyrard</dc:creator>

10 <vann:preferredNamespaceUri>http://linkedopenreasoning.appspot.com/dataset/rule−dataset</vann:
preferredNamespaceUri>

11 <vs:term_status>Work in progress</vs:term_status>
12 <dcat:keyword>"reasoning", "rule",
13 "vocabulary","semantics","ontology",
14 "health", "sensor", "heart beat", "cholesterol", "blood glucose"</dcat:keyword>
15 <dcat:mediaType>"application/rdf+xml"</dcat:mediaType>
16 <dcat:downloadURL>http://linkedopenreasoning.appspot.com/dataset/rule−dataset</dcat:downloadURL>
17 </dcat:Dataset>

Listing 9.2: Describing the rule data set using the Data Catalog Vocabulary (DCAT) vocabulary.

http://www.w3.org/ns/prov#
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Table 9.1 Ontology Name space.

Namespace
prefix

Description name Namespace URL

dcat Data Catalog Vocabulary http://www.w3.org/ns/dcat#

prov Provenance Ontology http://www.w3.org/ns/prov#

dc Dublin Core (DC) http://purl.org/dc/elements/1.1/

dcterms Dublin Core Metadata Terms http://purl.org/dc/terms/

vann Vocabulary for Annotating Vocabulary Descrip-
tions

http://purl.org/vocab/vann/

vs Vocab Status ontology http://www.w3.org/2003/06/sw-vocab-status/ns#

rdf Resource Description Framework http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs Resource Description Framework Schema (RDFS) http://www.w3.org/2000/01/rdf-schema#

owl Ontology Web Language http://www.w3.org/2002/07/owl#

m3 Machine-to-Machine Measurement Sensor Dictio-
nary

http://sensormeasurement.appspot.com/m3#

saref-core Smart Applications REFerence ontology https://saref.etsi.org/core/

FIGURE 9.5

S-LOR linked open reasoning for the health domain.

To describe the rule data set itself, we use the Data Catalog Vocabulary (DCAT) vocabulary http://
www.w3.org/ns/dcat# as shown in Listing 9.2.

Table 9.1 reminds name spaces used: the first column for the prefix name, the second column for
the name space description, and the third column for the ontology name space URL.

http://www.w3.org/ns/dcat#
http://www.w3.org/ns/prov#
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://purl.org/vocab/vann/
http://www.w3.org/2003/06/sw-vocab-status/ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://sensormeasurement.appspot.com/m3#
https://saref.etsi.org/core/
http://www.w3.org/ns/dcat#
http://www.w3.org/ns/dcat#
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9.4 End-to-end knowledge-based health and well-being use cases
We retrieve knowledge expertise from existing projects by classifying sensors (sensor dictionary for
health explained in Section 9.3.1), ontologies used to model data and applications (LOV4IoT ontology
catalog), and the reasoning mechanisms used to interpret sensor data (S-LOR tool). We integrate the
knowledge from several communities (health experts, IoT community designing ontologies, etc.). The
collected knowledge can be automatically retrieved within online knowledge API demonstrators, as
referenced in Table 9.2.

To summarize, we have defined a set of use cases using the SLOR reasoning discovery that extract
knowledge from the LOV4IoT-Health ontology catalog. The knowledge acquired to infer meaningful
information is implemented as rules. We simulated sensor data (e.g., data using the SenML format).
We annotated the data to be compliant with ontologies (the file can be accessed though the demos
referenced in Table 9.2). The semantic reasoner (based on the Apache Jena inference engine) is executed
on the semantic sensor data set and the set of rules are all compliant with each other.

For instance, after executing the reasoning engine, a rule has been executed that deduces that a heart
beat measurement, which is greater than 215 per minutes might be tachycardia, as illustrated in Fig. 9.8.
A subset of rules example discovered from the SLOR rule discovery and employed in health scenarios
is displayed in Table 9.6. We have more and more scenarios including various sensors (introduced in
Table 9.3 and Table 9.4), as an example:

• Blood pressure to infer disorders such as hypertension (Fig. 9.6).
• Blood glucose to infer disorders such as hyperglycemia (Fig. 9.7).
• Heart beat to infer disorders such as tachycardia (Fig. 9.8).
• Diet-related health data: cholesterol, blood glucose level, magnesium, potassium, sodium, vitamin

D, etc. (see Table 9.4).
• Well-being food recommendation use case: food recommended for depression, diabetes, choles-

terol, anxiety, stress, fatigue, sleeping issues, headache, etc.
• Other health data: SPO2, frequency, skin conductance, etc. (see Table 9.3).
• Activity data: activity level data.
• Air quality data: NO2, PM10, O3, PM2.5, SO2, CO.
• More and more scenarios are being added within the same demos with different kind of sensor

data (as referenced within Table 9.3 and Table 9.4) and more and more rules to deduce high level
information.

The set of online demonstrators are summarized in Table 9.2. Demonstrators (more precisely the
second column of Table 9.3) are classified according to: (1) physical activity, (2) healthy diet, (3)
emotional management with positive psychology, and (4) sleep management; as shown in the Venn
diagram depicted in Fig. 9.1.

Technologies employed in the implementation: Our demonstrators, referenced in Table 9.2, are
implemented with the Apache Jena semantic web framework that can deal with RDF, RDFS, and OWL
languages to implement the sensor dictionary. This dictionary is implemented within the M3 ontology
which is refined for the health domain. Jena also provides an inference engine used for the reasoning
process within scenarios. Java is used to develop REST web services with the JAX-RS library to hide the
complexity of using semantic web technologies, and the Graphical User Interface (GUI) is implemented
with Ajax, JQuery, JavaScript, HTML, and CSS.
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FIGURE 9.6

Inferring disease (e.g., hypertension) from blood pressure.

FIGURE 9.7

Inferring disease (e.g., hyperglycemia) from blood glucose.

FIGURE 9.8

Inferring disease (e.g., tachycardia) from heartbeat.
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Table 9.2 Set of online demonstrators: ontology catalogs, rule discovery, and full scenarios.

Tool name Tool URL
LOV4IoT-Health Ontology-based IoT Project
Catalog

http://lov4iot.appspot.com/?p=lov4iot-health

LOV4IoT-Health Web Service and Dumps (for
Developers)

http://lov4iot.appspot.com/?p=queryHealthOntologiesWS

S-LOR Health Rule Discovery http://linkedopenreasoning.appspot.com/?p=slor-health

M3-Health Full Scenarios http://sensormeasurement.appspot.com/?p=health

M3-Health (Naturopathy) Full Scenarios http://sensormeasurement.appspot.com/?p=naturopathy

ACCRA European–Japan project: Some of those scenarios such as heartbeat are also designed
for the ACCRA European-funded project9 that can be embedded in more sophisticated robot GUIs to
automatically alert the physicians when needed. More explanations are published within [22].

9.5 Key contributions and lessons learned
We designed a sensor dictionary and reasoner compliant with those standards: SAREF (SAREF-Core,
SAREF4EHAW, and SAREF4WEAR), IEC 61360 Common Data Dictionary, and W3C SOSA/SSN
employed within our semantic datasets, SPARQL queries, and rules. We have analyzed the following
limitations of SAREF specifications which highlights the need of our unified dictionary explained in
Section 9.3.1.

• Measurement types: saref:Property, m3:MeasurementType and sosa:ObservableProperty are
similarly designed.

• Inconsistency, lack of unification, or duplication are found for naming such as saref-core:Tem-
peratureSensor and saref4agri:Thermometer, it demonstrates the complexity to search for the
right terms and handle synonyms. We also have to deal with missing concepts and handle cross-
domains (e.g., diet is dependent to health; there is no SAREF for food).

• Sensor data values: saref:hasValue, m3:hasValue, and sosa:hasSimpleResult are similarly de-
signed; all can be used within our semantic data sets, SPARQL queries, and rules.

• Units: saref:isMeasuredIn and m3:hasUnit are similarly designed; all can be used within our
semantic data sets, SPARQL queries, and rules. Ontologies’ main goal is to explicitly describe the
data, descriptions such as saref:TemperatureUnit does not exactly remove ambiguities regarding
the unit used such as Celsius or Fahrenheit, which might lead to mistakes with automatic reasoning.

• Unifying sensor metadata: We structure sensor data in Table 9.3 and Table 9.4: (1) sensor
name, (2) the produced measurement, (3) the associated unit (e.g., Hertz to be more explicit than
saref4envi:FrequencyUnit). There is a need of domain experts to verify synonyms (e.g., heart
beat, heart rate). Each row of the table (sensor, measurement, unit) is implemented within the M3
ontology designed and maintained since 2012, (see also the M3-lite10 refined for the FIESTA-IoT

9 https://www.accra-project.org/en/sample-page/.
10 https://github.com/fiesta-iot/ontology/blob/master/m3-lite.owl.

http://lov4iot.appspot.com/?p=lov4iot-health
http://lov4iot.appspot.com/?p=queryHealthOntologiesWS
http://linkedopenreasoning.appspot.com/?p=slor-health
http://sensormeasurement.appspot.com/?p=health
http://sensormeasurement.appspot.com/?p=naturopathy
https://www.accra-project.org/en/sample-page/
https://github.com/fiesta-iot/ontology/blob/master/m3-lite.owl
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Table 9.3 Subset of the sensor dictionary: M3 ontology extended for emotional well-being and
preventive health. See the SLOR-Health online demo for a more exhaustive sensor dictionary
(frequently updated).

Sensor, measurement name and
unit

M3 scenarios SAREF-Core,
SAREF4Health
SAREF4Wear

Other names and standards, e.g.,
IEC 61360 Common Data
Dictionary

m3:PulseOxymeter � M3-Health ✗ –
m3:SPO2, xsd:GramPerLiter
m3:SkinConductanceSensor �M3-Health ✗ SC (Galvanic skin response)
m3:SkinConductance, m3:Siemens (Emotion) GSR, electrodermal activity, EDA
m3:HeartBeatSensor
m3:HeartBeat, m3:BeatPerMinute

�M3-Health
(Emotion)

✗ HeartRate, Breath rate, Respiration
rate, Pulse wave, Breathing rate bpm

m3:FrequencySensor �M3-Health ✗ alpha, beta, theta,
m3:Frequency, m3:Hertz s4envi:FrequencyUnit delta, gamma wave
m3:SystolicBloodPressureSensor �M3-Health ✗ blood volume pressure
m3:SystolicBloodPressure, m3:mmGg blood volume pulse (BVP)
m3:ActivityLevelSensor �M3-Health ✗ –
m3:ActivityLevel (Fitness) s4ehaw:hasActivity
xsd:int (owl:ObjectProperty)
m3:Pedometer �M3-Health ✗ –
m3:NumberStep, xsd:int (Fitness)
m3:PollenLevelSensor �M3-Health ✗ –
m3:PollenLevel, xsd:int
m3:SnoringLevelSensor �M3-Health ✗ –
m3:SnoringLevel, m3:Decibel
m3:BodyThermometer �M3-Health ✗ –
m3:BodyTemperature
m3:DegreeCelsius
m3:DegreeFahrenheit
m3:MagneticFieldSensor �M3-Health ✗ –
m3:MagneticField, m3:Tesla
m3:MagneticFluxDensitySensor �M3-Health ✗ –
m3:MagneticFluxDensity, m3:Gauss
m3:NeuronNumberSensor �M3-Health ✗ –
m3:NeuronNumber, xsd:int
m3:HemoglobinSensor �M3-Health ✗ Hemoglobin sensor [40]
m3:Hemoglobin, m3:GramPerLiter

H2020 European-funded project running from 2015 to 2018 [38]). SAREF is supported by ETSI
M2M since 2015.

• Provenance metadata: SAREF does not keep track the provenance of the information. For each
sensor, we reference sources such as scientific publications or project deliverables referenced on the
LOV4IoT ontology catalog project (Section 9.2.1 and Table 9.5). Similarly, the S-LOR project (see
Section 9.3.4) suggests reasoning mechanisms (e.g., rules) for specific sensor type. It is not provided
by SAREF.

• Interlinking ontologies: our proposed solution, compared to SAREF, is to link and unify ex-
isting ontologies to achieve semantic interoperability. We added links such as rdfs:subclassOf,
owl:equivalentClass, and rdfs:seeAlso. For each heath sensor, we explicitly add a link such as
<rdfs:subClassOf rdf:resource="&saref-core;Sensor"/> in the sensor dictionary. SAREF or
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Table 9.4 Subset of the sensor dictionary: M3 ontology extended for emotional well-being and
preventive health, focused on diet-related data. See the SLOR-Health online demo for a more
exhaustive sensor dictionary (frequently updated).

Sensor, measurement name and unit M3 scenarios SAREF-Core,
SAREF4Health
SAREF4Wear

Other names and standards,
e.g., IEC 61360 Common Data
Dictionary

m3:CholesterolSensor, m3:Cholesterol �M3-Health ✗ –

m3:GramPerLiter, m3:MmolPerLiter (Diet)

m3:Glucometer �M3-Health ✗ –

m3:BloodGlucose, xsd:Percent (Diet)

m3:Magnesium, m3:MagnesiumSensor �M3-Health ✗ Magnesium sensor [41]

m3:GramPerLiter (Diet)

m3:PotassiumSensor, m3:Potassium �M3-Health ✗ Potassium wearable sensor [42]

m3:GramPerLiter (Diet)

m3:SodiumSensor, m3:Sodium �M3-Health � Sodium wearable sensor [42]

m3:GramPerLiter (Diet) saref4watr:Sodium

m3:VitaminDSensor, m3:VitaminD �M3-Health ✗ Vitamin D sensor [43]

m3:GramPerLiter (Diet)

m3:ZincSensor, m3:Zinc �M3-Health ✗ [43]

m3:GramPerLiter (Diet)

W3C SOSA do not consider the IEC 61360 – Common Data Dictionary standard11 that we address
in Table 9.3.

• IoT Alliance: Our work is taken as a baseline in AIOTI12 (Alliance for the Internet of Things
Innovation) WG03 Standards – IoT semantic interoperability expert group within white papers [19,
21].

9.6 Conclusion and future work
Monitoring remotely patient’s vital signals can assist (elderly) people to stay independent at home and
reduce health care costs. Designing preventive health applications requires cross-domain knowledge
acquired from heterogeneous communities (e.g., health, affective science, fitness, diet, sleep, well-
being, IoT, Ambient Assisted Living, etc.). Health applications will use more wearables to monitor
patient’s vital signs. Integrating machine interpretable knowledge implemented within ontologies from
various domains is challenging. A solution is needed to reuse expertise from domain experts when they
are not available. Our experience and expertise is shared within standards (e.g., editors of the ISO/IEC
21823-3 IoT semantic interoperability).

11 https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet.
12 https://aioti.eu/.

https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet
https://aioti.eu/
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Short-term challenges: LOV4IoT is relevant for the IoT community. The results are encouraging
to update the data set with additional domains and ontologies. LOV4IoT leads to the AIOTI (The
Alliance for the Internet of Things Innovation) IoT ontology landscape survey form13 and analysis
result,14 executed by the WG03 Standards – Semantic Interoperability Expert Group. It aims to help
industrial practitioners and nonexperts to answer those questions: Which ontologies are relevant in a
certain domain? Where to find them? How to choose the most suitable? Who is maintaining and taking
care of their evolution?

Mid-term challenges: Automatic knowledge extraction from ontologies and scientific publication
describing the ontology purpose is challenging, as highlighted in our AI4EU Knowledge Extraction for
the Web of Things (KE4WoT) Challenge. The challenge encourages to reuse the expertise designed
by domain experts and make the domain knowledge usable, interoperable, and integrated by machines.
We released the set of ontologies, as dumps, web services, tutorials, and make them available for the
challenge.

Long-term challenges: To improve the veracity and the evaluation of the recommender, involving
physicians such as psychologists, fitness coaches, nutritionists would enhance our health applications,
by proving more the facts. We investigated psycho-physiology [39] research field to prove such facts.
Collecting emotion ontologies has been initiated within the ACCRA project (robots for healthy ageing
that provide well-being applications) [22].
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Appendix 9.A IoT-based ontologies for health
The ontologies are collected and analyzed to extract knowledge to: (1) build a sensor dictionary for
health (see Section 9.3.1), (2) extract rules from ontologies or scientific publications (see Section 9.3.4),
and (3) simulate full health scenarios by providing provenance of the information (see Section 9.4).

We summarize a subset of ontologies collected in Table 9.5 to convey the purpose of the designed
ontologies:

• Ambient Assisted-Living (AAL) ontologies in Section 9.A.1,
• Disease-related ontologies such as cardiology and diabetes in Section 9.A.2,
• Electronic Health Records (EHR) ontologies in Section 9.A.3,
• Wearable ontologies in Section 9.A.4,
• Health Ontologies designed for EU Projects in Section 9.A.5, and
• Other health-related ontologies in Section 9.A.6.

13 https://ec.europa.eu/eusurvey/runner/OntologyLandscapeTemplate.
14 https://bit.ly/3fRpQUU.

https://ec.europa.eu/eusurvey/runner/OntologyLandscapeTemplate
https://bit.ly/3fRpQUU
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Table 9.5 Subset of ontology-based health IoT projects and reasoning mechanisms employed.

Authors Year Project OA Reasoning Sensors
BioPortal [23] 2021 Biomedical ontology catalog � ✗ ✗

2009 but IoT ontologies for smart health not found
LOV [24] Linked 2021 Ontology Catalog � ✗ ✗

Open Vocabularies 2015 designed by the Semantic Web Community
ACTIVAGE [76] 2018 ACTIVAGE Ontologies � �Data Analytics �
SAREF4EHAW [29] 2020 SAREF for e-Health and Ageing Well � ✗ ✗

Moreira et al. [81,82] 2018
SAREF4WEAR [83] 2020 SAREF for Wearables � ✗ ✗

Nachabe et al. 2015 Wearable – WBAN for mobile application � �SWRL
[75,84] 2014 for sport exercises
Villalonga et al. [74] 2017 Wearable – Activity recognition � Rules for
MIMU-Wear wearable replacement
Enshaeifar, 2018 FHIR4TIHM Data model based on HL7 � �Data analytics �temperature
Barnaghi et al. [65] and not ontology and ML humidity, blood pressure, pulse
Aloulou et al. [50] 2013 Ambient Assisted Living (AAL) � �Euler, FOL rules �

reasoning engine
Lemlouma et al. [53] 2013 Elderly Dependency in Smart Homes � �SWRL, �Shower, Proximity, presence, vibrator,

motion, mattress sensor
Roose, Abdelaziz Jess rule engine
Yao, Akhil Kumar et al. 2013 Context Awareness in Healthcare � �Drools, SWRL ✗

[59,60] 2009 heart failure Pellet, Jess
Brandt, Lukkien 2013 ContoExam ontology � ✗ �ECG
Liu et al. [46,47] for Remote Patient Monitoring (RPM)
Paganelli, Giuli et al. 2011 Ontology for health monitoring � �rule �heart rate
[44,45] 2007 and patient chronic condition in home engine body temperature
Jovic et al. [58] 2011 Heart failure ontology � �Pellet, SWRL �Echocardiography
Zhao, Samwald et al. 2010 Chinese Medicine as Linked Open Data � ✗ ✗

[78,79]
Mazuel et al. [54] 2009 SNOMED to align 3 ontologies:

hypertension,
� ✗ ✗

INSERM, France pneumology, surgery resuscitation
Lafti et al. [48] – HIT 2007 Telehealth Smart Home � �SWRL, �motion, temp, presence,
Canada Elderly in Loss of Cognitive Autonomy OWL restrictions light, blood pressure, actuator, fall detector
Seneviratne et al. [63] 2021 Personal Health KG for Diet ✗ �
Li et al. [66] 2020 Medical KG from EMRs – Parkinson’s ✗ �ML
Chatterjee et al. [49] 2021 Healthy Lifestyle Management – Obesity ✗ �Hermit, SWRL �
Otto et al. [1] 2020 Ontology for telemedicine terms ✗ ✗ ✗

Lyons et al. [77] 2021 SORBET (Sensor Ontology for Reusable ✗ ✗ ✗

Biometric Expressions and Transformations)
Adel et al. [67] 2020 Ontology for EHR ✗ ✗ ✗

Rhayem et al. [51] 2017 HealthIoT Ontology ✗ �Drools temperature, heart rate, cholesterol,
patient monitoring Diagnosis inference engine,

SWRL rules
blood pressure

Sherimon et al. [61] 2016 OntoDiabetic ontology ✗ �OWL2 rules ✗

Process ontology (clinical guidelines) forward chaining
inference

Gai et al. [71] 2015 EHR for diagnosis error prevention ✗ �EPAA ✗

Mukasine et al. [62] 2014 ontology for glucose, insuline, diabete, diet ✗ � ✗

Legend: Ontology Availability (OA), when the code is available, the ontologies are classified on the top. Then the ontology-based
projects are classified by year of publications. First-Order Logic (FOL), Error Prevention Adjustment Algorithm (EPAA), Machine
Learning (ML).

9.A.1 Ambient assisted-living (AAL)/ remote monitoring for health ontologies using
IoT technologies

Ontology-based context model for health monitoring (Paganelli et al. [44,45]) and handling patient
chronic conditions are addressed in a home-based care scenario. A patient personal domain ontology
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and a rule-based reasoning approach analyze patient data such as body temperature and heart rate to
detect patient abnormal conditions and raise alarm when threshold values are reached.

ContoExam ontology for Remote Patient Monitoring (RPM) (Brandt, Liu et al. [46,47]) is used
in an e-Health application to increase quality of life by curing remotely and to improve decision making
to ease professional decisions. An epileptic seizure scenario is provided.

Telehealth Smart Home (TSH) ontology (Lafti et al. [48]) is designed for elderly in loss of cogni-
tive autonomy (e.g., intellectual deficiency because of Alzheimer or similar disease, physical-deficiency
due to age-related disease, visual deficiency, auditive deficiency). The TSH ontology is used to under-
stand if the patient is safe or he is at risk, and is employed by the Bayesian network that recognizes
the patient’s activity and understands its life habits. Telehealth Smart Home (TSH) ontology comprises
seven subontologies: (1) Person and medical history ontology describes the person who needs care and
his medical history, or the person taking care and his duties, (2) Behavior ontology to understand life
habits and critical physiological parameters, (3) Equipment smart home ontology describes furniture
equipment, the household equipment, and the technical equipment to ensure the patient safety, (4) Task
smart home ontology, (5) Software smart home ontology, (6) Habitat smart home ontology describes
where the patient lives such as rooms, doors, windows, and (7) Event/decision smart home ontology
detects a critical situation or a change of habits.

UiA e-Health ontology/UiAeHo (Chatterjee et al. [49]) is used to annotate personal, physiologi-
cal, behavioral, and contextual data from heterogeneous health and wellness data (sensor, questionnaire,
and interview). The ontology is employed within an e-Coach system, a rule-based decision support sys-
tem (DSS) to predict the probability for health risk and provide a lifestyle recommendation generation
plan against adverse behavioral risks. The ontology is integrated with W3C SSN and SNOMED-CT.
The ontology is applied to an obesity use case but could be extended to other lifestyle diseases. Five
experts have been consulted with a research background in ICT, e-Health, nursing, and nutrition for
simulating activity and nutrition data. Obesity-related information and guidelines were obtained from
the World Health Organization (WHO), the National Institute for Health and Care Excellence (NICE),
and the Norwegian Dietary Guidelines.

Aloulou et al. [50] achieved Ambient Assisted Living (AAL) deployment experience in Singapore
within three rooms of a nursing home with eight patients and two caregivers. Three services to assist
patients, based on semantic Plug&Play mechanisms and sensors, are designed: (1) wandering at night
without going back to sleep, (2) showering for a long period of time, and (3) leaving the wash-room tap
on after washing hands.

HealthIoT Ontology for patient monitoring (Rhayem et al. [51]) is integrated within the IoT
Medicare system for diagnosis and decision making for doctors to assist patients. Sensors employed
are temperature, heart rate, cholesterol, blood pressure, and blood glucose.

Cognitive Semantic Sensor Network ontology (CoSSN) ontology (Zgheib et al. [52]). The se-
mantic IoT healthcare application development framework provides a simple software API usable in
various application domains and to alleviate the tasks of software developers. The framework is based
on the OSGi Java framework and the Kura platform from the Eclipse foundation to integrate MQTT
communication protocol and facilities to add IoT devices.

Lemloula, Laborie, Roose et al. [53] focus on Activities of Daily Living (ADL) on French AGGIR
elderly people (Autonomy Gerontology Iso-Resources Group). Sensors such as temperature, video,
sound, presence, etc. are used to detect activities of daily living such as hygiene, toilet use, eating,
resting, and dressing.
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9.A.2 Disease-related ontologies
Mazuel et al. [54] align three ontologies with SNOMED v3.5: a pneumology ontology (OntoPneumo
based on CIM-10), arterial hypertension (OntoHTA based on SNOMED-CT), and surgery resuscitation
ontology (OntoReaChir based on CIM-10).

9.A.2.1 Cardiology-related ontologies
Colicchio et al. [55] annotate patients’ care context cardiology data as represented in clinical notes and
spoken communications during outpatient visits.

Patient’s Vital Signs Monitoring (Hristoskova et al. [56,57]) is an Ambient Intelligence (AmI)
framework that provides real-time monitoring of patients diagnosed with Congestive Heart Failure
(CHF). The ontology-based reasoning enables personalized medical detection and alert (e.g., rules for
SP02, heart rate, and blood pressure).

Heart Failure (HF) ontology (Jovic et al. [58]) is designed for the EU FP6 project HEARTFAID.
The expert system for patient related warnings, suggestions, and/or decisions includes 200 rules imple-
mented in SWRL with Pellet that are in a form similar to the presented rule for systolic heart failure.
Height groups of rules including: diagnosis, alternative diagnosis, severity assessment, prognosis, med-
ication prescription, and medication related warnings, and acute decompensation detection. This HF
ontology has been developed mainly by technical people by reading medical literature, primarily HF
guidelines published by the European Society of Cardiology.

Hospital ontology (Heart failure from the HEARTFAID team and clinical ontology) from
ConFlexFlow (Clinical cONtext based flexible workFlow) (Kumar, Yao et al. [59,60]) is used for
Clinical Decision Support Systems (CDSS). ConFlexFlow supports clinical workflows to follow stan-
dards such as HL7 and clinical guidelines. ConFlexFlow integrates medical knowledge in the form of
rules (using SWRL, Drools, and Jess), 18 SWRL rules for describing heart failure procedural knowl-
edge (detection, diagnosis, and treatment of chronic heart failure, systolic heart failure, hypertensive
heart failure, etc.). It focuses on the diagnosis and treatment of heart failure patients based on context
information. Experiments are done with 30 patients, 25 hospital personnel, 40 assets, and 40 locations
as test cases. Pellet is employed to validate the model with logical consistency, concept satisfaction, and
classification. Key measures of quality (KPIs) are: number of treatment errors because of drug interac-
tions (or allergies), number of diagnosis errors, number of cases of treatment not covered by patient’s
insurance, number of treatment failures for lack of available resources, complication rate per patient,
patient satisfaction, etc.

9.A.2.2 Diabetes and diet-related ontologies
OntoDiabetic (Sherimon et al. [61]) is an ontology-based reasoning to recommend the suitable treat-
ment for diabetic patients by considering the current medical status. Patients in the studies have three
main complications: cardiovascular disease (CVD), diabetic nephropathy, and hypertension. The rea-
soner (forward chaining inference) reasons by processing the semantic profile as input with the clinical
guidelines defined within the process ontology stored knowledge to infer risk scores and treatment
suggestions. OntoDiabetic system computes the score and predicts the risk of diabetic patients due to
smoking, alcohol, physical activity, sexual, and cardiovascular disease that mainly affects diabetes.

Mukasine et al. [62] design an ontology-based knowledge base to manage diabetic patient. The
ontology supports data sharing and can generate recommendations for the diabetic patient such as
medications and diets in the remote supervision.
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Personal Health KG for diet (that includes an ontology) (Seneviratne et al. [63]) considers
user’s temporal personal health data (and mentioned our Personalized Health KG past work [36]) to
personalize dietary recommendations for diabetic patients. Food recommendations are provided to an-
swer such questions: (1) What should I eat for breakfast? (2) What foods can I eat if I have a dairy
allergy? (3) What can I substitute for food Y? (patient’s taste preferences).

A more comprehensive review of food-related ontologies are available in our parallel work [64] that
encourages a healthy diet. Hereafter, an overview of research was published in 2021.

9.A.2.3 Dementia models, ontologies or KGs: Parkinson’s, Alzheimer’s, etc.
Technology Integrated Health Management (TIHM), FHIR4TIHM, (Enshaeifar, Barnaghi et al.
[65]) supports 700 patients with dementia, healthcare practitioners, and patient’s caregivers to improve
their quality of life: (1) learn daily patterns, (2) detect agitated/irritated patients, and (3) detect Urinary
Tract Infections (UTIs). TIHM is deployed in the Chertsey Hospital (Surrey, England). FHIR4TIHM
is a model, based on HL7 and not an ontology, that uses IoT technologies (e.g., 25 sensors/apps per
home). Security and privacy issues are addressed.

Medical KG from large-scale Electronic Medical Records (EMRs) (Li et al. [66]) infers pos-
sible diseases and recommend medical orders. Eight steps are needed to build the medical KG: data
preparation, entity recognition, entity normalization, relation extraction, property calculation, graph
cleaning, related-entity ranking, and graph embedding. The data set contains 16,217,270 deidentified
clinical visit data of 3,767,198 patients from Southwest Hospital in China. The KG contains 22,508
entities and 579,094 quadruplets (instead of usual triplets). The ontology term is not explicitly men-
tioned. Use cases for Parkinson’s disease and lung cancer are provided. The International Classification
of Diseases (ICD-9) standard is used to map disease, diagnosis, and surgery terms. Two experiments are
performed: (1) Bi- LSTM network, and (2) graph embedding to a neural network (Bi- LSTM network)
task to predict medicine prescription by diseases using the MIMIC3 data set.

Telehealth Smart Home (TSH) ontology (Lafti et al. [48]) (mentioned previously) is designed
for elderly in the loss of cognitive autonomy (e.g., intellectual deficiency because of Alzheimer’s or a
similar disease, physical-deficiency due to an age-related disease).

9.A.3 Electronic Health Records (EHR) ontologies
Adel et al. [67] cover health standards such as IHTSDO, DICOM, CDISC, IHE, HL7, CEN/ISO 13606,
and openEHR. Adel et al. exploit the semantic web technologies to support EHRs by designing a unified
ontology-based framework to deal with data integration between heterogeneous systems. It is aimed to
build a more realistic, applicable, accurate, medically acceptable, reliable, and global EHR interoper-
able environment. The fuzzy ontology-based semantic interoperability framework for distributed EHR
systems [68] is designed to help physicians query patient data from distributed locations using near-
natural language queries. The EHR MIMIC-III intensive care unit data set includes 100 patients.

Ontology and HL7 Reference Information Model (RIM)-based middleware (Plastiras et al.
[69,70]) provides interoperability between Personal Health Record (PHR) and Electronic Health
Record (EHR) systems.

Ontology-based EHR Error Prevention Model (OEHR-EPM) (Gai et al. [71]) is designed to
alert physicians and assist them with medical diagnosis using the Error Prevention Adjustment Al-
gorithm (EPAA) algorithm. A scenario assists physicians to avoid misdiagnose by distinguishing the
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gastritis from pancreatitis since they have similar symptoms that can cause a misdiagnose with a serious
consequence, such as surgery and death.

OpenEHR project [72] provides an Electronic Health Record (EHR) ontology.

9.A.4 Wearable ontologies
Hodges et al. [73] manually align ontologies having concepts such as disease, symptom, anatomy,
device, and physical property.

MIMU-Wear (Villalonga et al. [74]), is an extensible ontology that describes wearable sensor
platforms consisting of mainstream magnetic and inertial measurement units (MIMUs), measurement
properties, and the characteristics of wearable sensor platforms including their on-body location.

Generic Ontology for Wireless Body Area Networks (WBANs) (Nachabe et al. [75]) is designed
for the Android m-Health mobile application to calculate burned calories and trajectory of a runner
while doing his running exercise.

9.A.5 Ontologies from European projects: ACTIVAGE and HEARTFAID
H2020 ACTIVAGE Semantic Interoperability Layer (SIL) ontology (Kalamaras et al. [76]) is used
by real-time data analytics within the Data Lake infrastructure. The ACTIVAGE ontology is based on
existing IoT ontologies to combine and extend them: W3C SSN, ETSI SmartM2M SAREF, oneM2M,
IoT-Lite, and OpenIoT. ACTIVAGE is a project that supports large-scale IoT applications for health
assistance for older people. A smart home use case eases decision making (e.g., understand daily activ-
ities, facilitate clinicians in monitoring patient’s health, and detect anomalies). The mobility use case
monitors and assists the older person while moving in a city, providing information and alerts when
needed.

FP6 HEARTFAID project produced the Heart Failure (HF) ontology (Jovic et al. [58]) and the
Hospital ontology (Yao et al. [59,60]), as mentioned above.

9.A.6 Other ontologies
SORBET (Sensor Ontology for Reusable Biometric Expressions and Transformations) (Lyons
et al. [77]) designed for the Medidata Sensor Cloud product. It is based on wearable technologies to
collect sensor data from the patient’s daily lives to be used in clinical trials.

Ontology for telemedicine terms (Otto et al. [1]) is designed to remove ambiguities of
telemedicine terms: (1) the definition of relevant terms, (2) their interrelations, and (3) a description of
specific application types of telemedicine.

Chinese Medicine (CM) Linked Open Data (Zhao, Samwald et al. [78,79]) is published on the
web.

Ontology for Diagnostic classification (Bertaud-Gounot et al. [80]), applied to diseases such
as spondyloarthritis (SpA), is experimented with 30 real patient cases. The HermiT reasoner API is
employed for ontology validation, consistency checking, and taxonomy classification.
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Table 9.6 Subset of rules example discovered from the SLOR rule discovery and employed in
health scenarios.

Sensor measurement type Rules Source
Air Quality Index (AQI) Good AQI US (0–50 AQI) Air quality web site [WR21]

Moderate AQI US (51–100 AQI)

Unhealthy sensitive group AQI US (101–150 AQI)

Unhealthy AQI US (151–200 AQI)

Very unhealthy AQI US (201–300 AQI)

Hazardous AQI US (301–500 AQI)

Pollen Index Low pollen level (0–2.4) Pollen web site [WR10]

Low medium pollen level (2.5–4.8)

Medium pollen level (4.9–7.2)

Medium high pollen level (7.3–9.6)

High pollen level (9.7–12)

Outside Humidity Dry humidity (30%–40%) Staroch et al. [85]

Normal humidity (40%–70%)

Very moist humidity (80%–100%)

Very dry humidity (0%–30%)

Moist humidity (70%–80 %)

Inside Humidity Low humidity (< 50%) Yacchirema et al. [86]

High humidity (51%–69%)

High humidity (> 70%)

Activity Sedentary person (< 5000 steps count) Yacchirema et al. [86]

(Minutes active, Mildly active person (5000–7499 steps count)

Sedentary minutes, Moderately active person (7500–9999 count)

Minutes lightly active, Active person (10,000–12,499 steps count)

Number of steps) Highly active person (>= 12,500 steps count)

Snoring Normal snoring level (< 40 dB) Yacchirema et al. [86]

Mild snoring level (40-50 dB)

Moderate snoring level (50-60 dB)

Severe snoring level (>= 60 dB)

Sleep Not found yet Yacchirema et al. [86]

(Minutes REM sleep,

Minutes Light sleep, Laxminarayan [87]

Minutes Deep sleep, Angelidou [88]

number minutes active, Mueller et al. 2011 [89]

minutes asleep, PhD Sleep Activity Ontology

minutes awaken,

Number of awakenings,

Time in bed)
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10.1 Introduction
Recent studies have shown the need for a variety of effective solutions to maintain a healthy lifestyle
(e.g., Apple Health Kit [WR2]) and are the basis for emerging applications such as digital personal-
ized health coach applications that track and interpret health and well-being data [1]. Other related
areas contributing to these applications include Wireless Body Area Networks (WBANs) [2], medical
Internet of Things (mIoT), m-Health, e-Health, and Ambient Assisted Living (AAL) [WR3]. These
applications utilize: (1) inexpensive IoT devices and wearables to collect raw data (e.g., Fitbit to mea-
sure activity and sleep patterns), (2) a knowledge graph (e.g., obesity ontology [WR4]) to structure
and abstract the data, and (3) a reasoning mechanism to deduce insights and recommendations (e.g.,

Semantic Models in IoT and eHealth Applications. https://doi.org/10.1016/B978-0-32-391773-5.00016-9
Copyright © 2022 Elsevier Inc. All rights reserved.

199

https://doi.org/10.1016/B978-0-32-391773-5.00016-9


200 Chapter 10 Reasoning over personalized healthcare knowledge graph

using environmental data with a rule-based inference engine to provide high-level abstractions). The
World Health Organization (WHO) [WR1] estimates 235 million people had asthma in the year 2018.
In cases such as asthma, a multifactorial disease, a lot of different data types are relevant. However, the
state-of-the-art lacks appropriate exploitation of contextual and personalized data and their integration
with background medical knowledge bases for monitoring user health.

Context-awareness refers to the use of external data that can impact the user’s situation. For in-
stance, IoT devices can be used to monitor the surrounding environment. Interpretation of fine-grained
IoT data using a background model for abstraction provides contextual awareness to clinicians. Clinical
protocols should take these into account to determine a patient’s condition [WR5]. For example, each
patient reacts differently when exposed to environmental factors (e.g., air pollution or different types of
pollen).

Personalization adjusts the treatment according to the patient’s vulnerability and severity. Aug-
mented Personalized Healthcare (APH), a strategy for patient empowerment [3] consists of self-
monitoring, Self-Appraisal, self-management, intervention, and disease progression tracking and pre-
diction. Self-monitoring is defined as continuous monitoring of patient health data using IoT de-
vices, wearables, environmental sensors, etc. Self-appraisal is the ability of the patient to evaluate
the relevance of the data and observations within the context of the patient’s health objectives. Self-
management is the decision and behavioral changes a patient engage in to impact one’s health ob-
jectives. Intervention is the change in the patient’s care protocol prescribed by the clinician. Disease
progression tracking and prediction is the longitudinal collection of Patient Generated Health Data
(PGHD) and environmental data, which can facilitate monitoring of patient’s disease progress, pre-
dict a significant change in their health status, and take remedial actions. Patient’s multimodal data is
obtained from clinical documents (demographic information, clinician’s observations, lab tests, data
collected during clinical visits), PGHD including sensor and social data (see Fig. 10.1, e.g., involving
more than 25 types of data for each pediatric asthma patient in [4]). The PHKG understands treatments
based on the patient’s vulnerabilities, triggers, and symptoms. Personalization, in conjunction with pre-
dictive analytics, is needed to realize self-management and intervention [5]. For instance, the dosage of
long-term controller medication prescribed for an asthmatic patient to control the symptoms is tailored
to the person’s asthma severity, the potential for environmental triggers, and the history [6].

The personalized healthcare knowledge graph [WR6] is a representation of all the relevant med-
ical knowledge and personal data for a patient. A knowledge graph is comprised of an interlinked set of
ontologies and data sets. PHKG formalizes medical information in terms of relevant relationships be-
tween entities. For instance, an asthma KG can describe causes, symptoms, and treatments for asthma,
and PHKG can be the subgraph containing the causes, symptoms, and treatments that are tailored and
applicable to a given patient. PHKG can support the development of innovative applications such as
digital personalized health coach application that can keep patients informed, help manage their chronic
condition, and empower the clinicians to make effective decisions on health-related issues or receive
timely alerts as needed through continuous monitoring.

Societal Challenges (SC) and Technical Challenges (TC) for building a PHKG are investigated
as follows:

• SC1: What recommendations can be suggested by health applications to assist patients?
• SC2: How can personalized health coach applications help clinicians?
• SC3: Web sites such as airnow.gov and pollen.com provide visualization of environmental factor’s

data sets according to their quality (e.g., low or high), which is mainly used by humans to under-

https://www.airnow.gov/
https://www.pollen.com/
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stand the current environmental condition. How can machines automatically interpret and get this
information? We need to provide the range (e.g., between X and Y then it is considered HIGH) to the
machine to understand the data either with rule-based reasoning (used in this chapter) or machine
learning techniques (kept as future work).

• SC4: Can a machine be trained and allowed to diagnose a disease such as asthma?
• SC5: What environmental conditions (e.g., pollen level) impact an individual patient and trigger

asthma symptoms (e.g., cough)?
• TC1: How to build a PHKG? How are Google Health KG or IBM Watson KG made? Information

provided in tutorials such as [7] does not offer concrete steps to construct a KG.
• TC2: How to deduce meaningful information from a data set or actionable information from PHKG?
• TC3: How to maintain data privacy and security of patient data? Our IRB deals with this critical

issue, including anonymization (information that identifies a patient remains in the DCH’SHIPAA
compliant scope and is not associated with the kHealth-Asthma managed data). Additional explo-
ration is discussed in [8] and is not part of this chapter.

Addressing these challenges has to lead to our main Innovations (I) as discussed below:

• I1: The PHKG for Asthma, extending our position paper [9].
• I2: A set of predefined queries provided as a tutorial that uses the kAO ontology and query the

enriched semantic data sets.
• I3: A PHKG rule-based inference engine applied to asthma disease, which interlinks domain knowl-

edge.
• I4: A set of interoperable rules following the linked data and linked vocabularies trends.

To design the PHKG prototype, we set out with the following Assumptions (A):

• A1: All scientific papers mentioning an ontology and rules should provide a reproducible result,
which means that the code or a demonstrator is available online and reproduction of the experiments
should be quick and easy. Moreover, according to ontology engineering best practices (e.g., FAIR
principles), ontologies are expected to be shared online.

• A2: Each IoT data type (e.g., air temperature, pollen) can be annotated with a concept from the kAO
ontology, which is interlinked with other relevant ontologies to enrich raw data sets.

• A3: All data sets are already converted to Sensor Measurement Lists (SenML) format [WR7] sup-
ported by Cisco and Ericsson, a format to unify sensor measurements. The automatic semantic
annotator supporting heterogeneous data formats (CSV, various JSON formats, etc.) is considered
as future work.

Use Case: We demonstrate the use of PHKG with the kHealth-Asthma project [WR8,WR35] devel-
oped at Kno.e.sis Research Center in collaboration with Dayton Children’s Hospital. kHealth-Asthma
is a framework for continuous monitoring of the patient’s health signals, indoor and outdoor envi-
ronmental data. It generates notifications as needed to assist both the patient and the clinicians [10].
The kHealth-Asthma data set integrates data from three different sources: (1) clinicians provided
anonymized extracts (throughout kHealth-Asthma, a patient is only identified by an id, patient iden-
tity is only known to the relevant clinical personnel at DCH for HIPAA compliance), (2) Environmental
data collected using IoT devices (e.g., Foobot) and by Web Services (for outside humidity, outdoor
temperature, air quality [WR9], and pollen index and type [WR10]), and (3) Personal health signals
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recorded using mobile application (e.g., a short questionnaire) and IoT devices (e.g., Fitbit, peak flow
meter) to provide data on sleep, activity, and heart rate, etc.

The remainder of this chapter is organized as follows. First, we discuss the related work limitations
in Section 10.2. Then we introduce the PHKG reasoner in Section 10.3. The implementation, results,
and evaluation are explained in Section 10.4. Discussions are provided in Section 10.5. Finally, we
draw our conclusion in Section 10.6.

10.2 Related work
We review the state-of-the-art healthcare KGs in this section, and categorize them based on their inter-
polation with statistical and learning-based approaches.

Knowledge Vault and Google Knowledge Graph can be considered as pioneering works for
the ‘knowledge graph” key phrase (aka semantic web technologies and philosophy) [11]. Knowledge
graphs quality (e.g., error detection) and evaluation are surveyed in [12]. The survey does not pro-
vide references regarding Healthcare KG but compares Machine Learning (ML)-based KGs. Major
search engines Bing, Google, and Yahoo created Schema.org [13], a set of vocabularies to annotate
web pages. Annotations are embedded in websites to structure data on the web. The first application of
Schema.org is Google’s Rich Snippets. Schema.org supports RDFa, JSON-LD, and microdata part of
HTML5. Schema.org demonstrates the wide deployment and usage of semantic web technologies.

Personal Health KG for diet (that includes an ontology) (Seneviratne et al. [14]) considers user’s
temporal personal health data (and mentioned our personalized health KG past work [9]) to personalize
dietary recommendations for diabetic patients. Food recommendations are provided to answer such
questions: (1) What should I eat for breakfast? (2) What foods can I eat if I have a dairy allergy? (3)
What can I substitute for food Y? (patient’s taste preferences).

Medical KG from large-scale Electronic Medical Records (EMRs) (Li et al. [15]) infers pos-
sible diseases and recommend medical orders. Eight steps are needed to build the medical KG: data
preparation, entity recognition, entity normalization, relation extraction, property calculation, graph
cleaning, related-entity ranking, and graph embedding. The data set contains 16,217,270 deidentified
clinical visit data of 3,767,198 patients from Southwest Hospital in China. The KG contains 22,508
entities and 579,094 quadruplets (instead of usual triplets). Use cases for Parkinson’s disease and lung
cancer are provided. International Classification of Diseases (ICD-9) standard is used to map disease,
diagnosis, and surgery terms. Two experiments are performed: (1) Bi- LSTM network and (2) graph
embedding to a neural network (Bi- LSTM network) task to predict medicine prescription by diseases
using the MIMIC3 data set.

Depression KG [16] is a disease-centric KG applied to major depressive disorder, and it ad-
dresses several challenges: (1) Heterogeneity of data sets, (2) text processing, (3) incompleteness,
inconsistency, and incorrectness of data sets, and (4) expressive, representation of medical knowledge.
Depression KG, utilizing rule-based reasoning over the KG, can help psychiatric doctors with no KG
expertise. A health KG to analyze EMRs is designed by Rotmensch et al. [17] to process high-quality
knowledge bases automatically (e.g., ICD-9 and UMLS) linking 156 diseases and 491 symptoms di-
rectly from EMRs. Medical concepts are extracted from 273,174 patient records. Three probabilistic
models are used to construct the KG: Logistic regression, Naive Bayes and a Bayesian network using
noisy-OR gates. The authors use the manually curated Google Health KG [WR36] to demonstrate that
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their work provides better precision and recall. Shi et al. [18] designed a pneumonia KG, and perform
a contextual inference pruning algorithm on knowledge graphs. Active Semantic Electronic Medical
Record (ASEMR) [19] is a rule-based application that semantically annotates EMRs that aims to (1)
reduce medical errors, (2) improves physician efficiency, (3) improves patient safety and satisfaction in
medical practice, (4) improves quality of billing records leading to a better payment, and (5) makes it
easier to capture and analyze health outcome measures.

Traditional Chinese Medicine (TCM) Health preservation KG [WR11] integrates a visualiza-
tion functionality to browse the KG [20]. The KG (designed in Chinese) has relationships between
symptoms, syndromes, diseases, prescriptions, and treatments. The comparison of this work with the lit-
erature survey is missing and lacks a clear explanation of the personalization recommendation. Another
Traditional Chinese Medicine (TCM) KG contains Electronic Medical Records (EMRs) in Chinese
that are automatically processed and analyzed [21]. The KG focuses on symptoms and symptom-related
entity extraction. Data related to symptoms, diseases, and medicines were collected from eight main-
stream healthcare websites: Familydoctor, PCbaby, fh21, JIANKE, 120 ask, 39Health, 99Health, and
QQYY. The Linked Open Data set (LOD) (in Chinese) uses UMLS and is shared on CKAN [WR12].
The work combines machine learning and knowledge graphs for the medical domains. A Conditional
Random Field (CRF) model extracts symptoms from EMRs. A decision tree classifier is employed
with seven labels: department, TCM, western medicine, symptom, disease, examination, and others.
A framework for automated extraction method for TCM medical KG construction is designed in [22].
The KG construction framework uses an ontology model and deep learning technique (Recurrent Neu-
ral Network). The framework comprises of four main modules: (1) A medical ontology constructor
explicitly adds knowledge (i.e., metadata) from unstructured clinical texts by utilizing NLP techniques
(e.g., named entity recognition and text classification), (2) a knowledge element generator generates
triples, (3) a structured knowledge data set generator extracts medical words to build the medical ontol-
ogy, and (4) a graph model constructor uses deep learning algorithms to build the KG. The evaluation of
the framework is done with a data set, which comprises of 886 patient cases for a hypertension scenario.

The need to combine KG and ML is introduced in [23] with a set of challenges of dealing with
knowledge such as (1) incompleteness, (2) implicitness, (3) heterogeneity, and (4) different models.
However, no healthcare use case is mentioned. Reviews on statistical models that can be trained on
KGs is introduced in [24]. Statistical models of graphs can be combined with text-based information
extraction methods for automatically constructing KGs from the Web, as demonstrated within Google’s
Knowledge Vault.

The section below, explains the challenges in integrating heterogeneous models to maintain a PHKG
utilizing various modalities supported by kHealth for an asthma patient. Table 10.1 provides references
and abstract summaries of the KG scientific articles (discussed above). It also cites nonhealthcare KG
such as Schema.org (designed by significant internet companies) to understand how KGs work. This
literature analysis shows that there is no reasoner inferring abstraction from sensor data sets and later
combining them with multidisciplinary external domain knowledge (e.g., health and weather ontolo-
gies). Only two papers integrate KG and ML technologies for healthcare: Shi et al. [18] and Rotmensch
et al. [17]. Le Phuoc et al. [25] is the only work addressing IoT data, but not for the healthcare use case.
None of those KGs discusses the challenges mentioned above, and hence none is appropriate for use
by for kHealth-Asthma project.
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Table 10.1 Summary of (Healthcare) Knowledge Graph (KG) using or not Machine
Learning (ML).

Authors Year Subject KG ML Health
KG

Seneviratne et al. [14] 2021 Health KG and Diet � ✗ �
Li et al. [15] 2020 Medical KG from EMRs � � �
Shi et al. [18] 2017 Health KG � � �
Yu et al. [20] 2017 KG TCM Visualization � ✗ �
Ruan et al. [21] 2017 KG TCM � ✗ �
Weng et al. [22] 2017 KG TCM � ✗ �
Wilcke et al. [23] 2017 KG and ML � � ✗

Rotmensch et al. [17] 2017 Health KG and EMR � � �
Huang et al. [16] 2017 Depression KG � ✗ �
Paulheim et al. [12] 2016 Survey KG � ✗ ✗

Guha et al. [13] 2016 Google KG, Schema.org � ✗ ✗

Nickel [24], Murphy, Tresp, 2016 KG and ML, Google KG � � ✗

Dong, Gabrilovich et al. [11] 2014 Knowledge Vault, Google KG

Le-Phuoc Graph of Things [25] 2016 KG for IoT � ✗ ✗

Ramaswami et al. [WR36] 2015 Google Health KG � ✗ ✗

Sheth et al. [19] 2007 Ontology and rule-based system � ✗ �
for EMRs – Active Semantic Electronic

Medical Record (ASEMR)

Legend: Traditional Chinese Medicine (TCM).

10.3 A reasoner for personalized health knowledge graph
PHKG Architecture: We explain the method to build the PHKG in terms of (1) its architecture (in-
troduced in [18]), (2) the use cases considered, (3) the medical data sets obtained from the Linked
Open Data (LOD) cloud [26], (4) the deductive reasoning mechanism to get high-level information
from IoT data sets, and (5) an online ontology catalog tool to reuse and share the domain knowledge.
The architecture designed to build our PHKG is introduced in Fig. 10.1. PHKG uses heterogeneous
knowledge sources: (1) IoT data provided by sensors, (2) medical data sets from Kno.e.sis Alchemy
API [WR31] that allows access to SNOMED-CT [WR13], UMLS [WR14], and ICD-10 [WR15], (3)
ontology catalogs to reuse models (e.g., asthma ontology), and (4) a set of unified deductive rules to
interpret data.

Data workflow is highlighted in Fig. 10.2. Data comes from data sets provided by the kHealth project
to infer higher-level knowledge using our KG-based reasoner. Each kHealth data set (e.g., asthma)
must be semantically annotated according to an ontology (e.g., the asthma data set will be designed
according to the kAO ontology [WR37]). It is a required step to later execute the kHealth reasoner to
infer new triples as explained below. To infer meaningful information from data sets, we designed a
set of rules. Those rules are mainly extracted from scientific publications when available or from web
services having the domain expertise required to get abstractions from the data. The main novelty of
our kHealth reasoner is the combination of different domain knowledge through IF THEN ELSE rules.
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FIGURE 10.1

Personalized Health Knowledge Graph (PHKG) architecture.

FIGURE 10.2

Enriching health and IoT data sets with rules: Overview of the reasoner workflow.

The ELSE part enables us to deduce meaningful abstraction from IoT measurements. Once the rules
are executed, the IoT data is linked to specific domain ontologies (e.g., those referenced in Table 10.2)
or data sets.

A detailed implementation of the kHealth reasoner is given in Fig. 10.3, which demonstrates the
data enrichment with a simple scenario: as input data, a raw value (e.g., pollen level 10) is given; as
an output, a recommendation is given “do not got outside” since the pollen is considered HIGH. Our
kHealth reasoner comprises several components as follows:
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Table 10.2 Relevant knowledge (implemented as ontologies or data sets) for the kHealth projects
to build the PHKG.

Topic Knowledge expertise Ontology Catalog/
Data set Catalog

Ontology URL

Asthma Not found yet BioPortal, AberOWL Asthma Ontology (AO) [WR24]

Asthma KHealth Project introduced
above

LOV4IoT Kno.e.sis Asthma Ontology (kAO)
[WR16]

Person Schema.org [13] – [WR32]

Sensors W3C SOSA/SSN LOV, LOV4IoT URL [WR33]

Smart home and
weather

Staroch et al. 2013 [28] LOV4IoT, LOV Staroch’s ontology [WR22]

Smart home and
weather

Kofler et al. 2011 [29] LOV4IoT, LOV Kofler’s ontology [WR23]

Food SMART PRODUCTS LOV4IoT URL [WR28b]

Health SNOMED-CT BioPortal URL [WR13]

Health ICD-10 BioPortal URL [WR15]

Health UMLS BioPortal URL [WR14]

Health Clinical trials BioPortal URL [WR27]

Health RxNorm BioPortal URL [WR25]

Health SIDER – URL [WR26] [WR26b]

Health MEDDRA BioPortal URL [WR27]

Health Diseasome (disease) – Data set URL [WR40]

Health DrugBank [WR39] BioPortal XSD Schema URL [WR40]

Patient, Health Hristoskova et al. 2014 [30] LOV4IoT Not yet

Air pollution Oprea et al. 2009 [31] LOV4IoT Not yet

FIGURE 10.3

End-to-end data workflow to automatically enrich and query smarter data.
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• Semantic Annotator automatically annotates heterogeneous data according to the kAO ontology.
• Reasoning Engine infers abstraction from semantic data. It comprises a set of interoperable rules

compliant with the kAO ontology.
• Knowledge Graph (KG) reuses health knowledge expertise from reputed and reliable ontology cat-

alogs such as BioPortal, LOV, LOV4IoT, and AberOWL (as depicted in Table 10.2). Our Kno.e.sis
Asthma Ontology (kAO) [WR16] incorporates parts of several domain-specific ontologies:
• Asthma Ontology (AO) [WR24] from BioPortal to reuse relevant concepts.
• W3C SOSA/SSN [WR33] to semantically annotate sensor observations (e.g., the peak flow meter

is a subclass of the sosa:Sensor class).
• Weather to deduce meaningful information from weather data sets (e.g., outside temperature and

humidity).
• Smart home ontologies [27,28] to interpret inside temperature and humidity data.
• Schema.org [WR32] to describe people.
• RXNORM ontology [WR25] has been used to get additional information about asthma medica-

tions (e.g., Ventolin, Abdulterol) (see Appendix 10.B).
• SMART PRODUCTS ontologies [WR28b] that describe food, recipes, and food allergies (e.g.,

nut scenario) (see Appendix 10.B).
• More ontologies are planned to be integrated (e.g., SNOMED-CT [WR13], MEDDRA [WR30]).

• Query engine provides a generic request to query smart data. The first column in Table 10.3 contains
the type of data to retrieve (e.g., pollen). A generic SPARQL query is illustrated in Listing 10.6.

The kAO ontology (Fig. 10.4) has been manually designed for the needs of the kHealth asthma
project in collaboration with the Dayton Children’s Hospital and evaluated with semantic web quality
tools.

The integration of the domain knowledge provides several challenges: (1) understanding the context
is done by formalizing domain knowledge, which is tailored to achieve a specific application, and (2)
knowledge implementation is not shared online: a significant debate about reproducible results (e.g.,
FAIR principles) within research papers [WR29]. We have to reimplement the explicit knowledge,
which is time-consuming and costly, and does not follow the primary goal of ontologies (sharing and
reusing knowledge).

10.4 Implementation, results, and evaluation
Our rule-based reasoner has been implemented (explained in Section 10.4.1) to interpret health and en-
vironmental data sets, enriched with domain knowledge expertise available within the PHKG (summa-
rized in Table 10.2). The PHKG is evaluated according to semantic web best practices (Section 10.4.2).

10.4.1 Implementation
Technologies: The current implementation was done in the Java 7 language, and using the Jena1 seman-
tic web framework. Jena is an open-source Java framework (supported by Apache) to develop semantic

1 https://jena.apache.org/.

https://jena.apache.org/
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Table 10.3 Relevant rules for health projects (e.g., asthma, obesity, sleeping disorders).

Sensor
measurement type

Rules Source

Air Quality Index (AQI) Good AQI US (0–50 AQI) Air quality web site [WR21]
Moderate AQI US (51–100 AQI)
Unhealthy Sensitive Group AQI US (101–150 AQI)
Unhealthy AQI US (151–200 AQI)
Very Unhealthy AQI US (201–300 AQI)
Hazardous AQI US (301–500 AQI)

Pollen Index Low Pollen Level (0–2.4) Pollen web site [WR10]
Low MediumPollen Level (2.5–4.8)
Medium Pollen Level (4.9–7.2)
Medium High Pollen Level (7.3–9.6)
High Pollen Level (9.7–12)

Outside Humidity DryHumidity (30%–40%) Staroch et al. [28]
NormalHumidity (40%–70%)
VeryMoistHumidity (80%–100%)
VeryDryHumidity (0%–30%)
MoistHumidity (70%–80%)

Inside Temperature AboveRoomTemperature (25–30 °C) Staroch et al. [28]
AboveRoomTemperature (>25 °C) Kofler et al. [29]
BelowRoomTemperature (10–20 °C) Staroch et al. 2013 [28]
BelowRoomTemperature (<20 °C) Kofler et al. 2011 [29]
RoomTemperature (20–25 °C) Staroch et al. [28], Kofler et al. [29]
Frost (0 °C) Staroch et al. [28]
Frost (0–(-25.0) °C) Kofler et al. [29]
ExtremeFrost (>-25.0 °C) Kofler et al. [29]
ExtremeHeat (>37 °C) Kofler et al. [29]
Heat (>30 °C) Staroch et al. [28], Kofler et al. [29]
AboveZeroTemperature (>0 °C) Kofler et al. [29]

Inside Humidity Low Humidity (<50%) Yacchirema et al. [32]
High Humidity (51–69%)
High Humidity (>70%)

Activity Sedentary Person (< 5000 steps Count) Yacchirema et al. [32]
(Minutes active, Mild Active Person (5000–7499 steps Count)
Sedentary minutes, Moderate Active Person (7500–9999 Count)
Minutes lightly active, Active Person (10,000–12,499 steps Count)
Number of steps) Highly Active Person (>= 12,500 steps Count)
Snoring Normal Snoring Level (< 40 dB) Yacchirema et al. [32]

Mild Snoring Level (40–50 dB)
Moderate Snoring Level (50–60 dB)
Severe Snoring Level (>= 60 dB)

Peak Flow Meter Asthma Green Zone American Lung Association
Asthma Yellow Zone Peak Flow rate [WR20]
Asthma Red Zone

Sleep Not found yet Yacchirema et al. [32]
(Minutes REM Sleep,
Minutes Light sleep, Laxminarayan [33]
Minutes Deep sleep, Angelidou [34]
number minutes active, Mueller et al. 2011 [35]
minutes asleep, PhD Sleep Activity Ontology
minutes awaken,
Number of Awakenings,
Time in Bed)
CO2 Not found yet Oprea et al. [31]
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FIGURE 10.4

Overview of the kAO ontology.

web applications. The Jena framework provides an inference engine (rule-based reasoning) to deduce
meaningful knowledge from semantic data sets. AndroJena, a light version of the Jena framework,
compatible with Android devices, also provides the query engine and the inference engine, which can
be considered for further extensions. Semantic languages, supported by W3C, such as RDF, RDFS, and
OWL are employed to develop the KG made of ontologies (e.g., kAO ontology) and used to create the
automatic semantic annotation component (see Fig. 10.3) to unify data sets. W3C SPARQL language
is used to query the PHKG.

Input data example: Data sets are provided in JSON. A simple pollen data JSON example is
depicted in Listing 10.1. Listings are provided within the Appendix section.

We use the SenML/XML language to unify data in this chapter since it is a format used by compa-
nies such as CISCO and W3C Web of Things standards. An example of a simple SenML data sample
to describe pollen is depicted in Listing 10.2.

Semantic annotator: It automatically annotates SenML/XML data according to the kAO ontol-
ogy. For instance, pollen will be explicitly annotated as kAO:PollenLevel. Pollen is described as a
sosa:observedProperty, that demonstrates the usage of the W3C SSN/SOSA ontology. A rule exam-
ple to automatically annotate the data compliant with kAO is depicted in Listing 10.3. The execution of
the rules will explicitly add the new triple ?measurementUri rdf:type kAO:PollenLevel.

Semantic rule-based inference engine: The rules are compliant with the kAO ontology. The Jena
inference engine (also previously used for the automatic semantic annotation) is used to infer high-level
abstractions by executing a set of “common sense” rules. A rule example of deducing the high-level
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abstraction HighPollen is illustrated in Listing 10.4. We manually collected and unified a set of rules
(as represented in Table 10.3) extracted from guidelines or scientific publications, which are based on
various rule languages and semantic reasoners. The grammar of our rules is illustrated in Listing 10.10,
which has been inspired by the Jena rule syntax and structure.

Ontology-based recommender system: Our ontology-based recommender system is illustrated
in Listing 10.5. The property hasRecommendation combines the kAO ontology with external domain
knowledge. In this example, the HighPollenLevel class is linked to the DoNotGoOut class. HighPol-
lenLevel must be a class since it is used to annotate the data semantically and to provide the explicit
rdf:type HighPollenLevel, which is processable and understandable by machines. DoNotGoOut could
be defined as a class or instance. The current recommendation system implementation is being done
manually and considered as future work to semiautomatically enrich our KG with external knowledge.

Generic query engine: The generic SPARQL query is displayed in Listing 10.6. The query re-
trieves data classified in Table 10.3 (first column). A generic application template is provided where the
variable ?semanticAnnotationTypeUri can be replaced by any data types already referenced within
kAO (e.g., pollen, humidity). ?semanticAnnotationTypeUri must be replaced by an IRI available
within kAO. Listing 10.8 shows a SPARQL query example to demonstrate the powerful usage of the
knowledge-based reasoner with a patient having allergies to nuts. An allergy to nuts is the perfect
example since we can query the food taxonomy [WR28b], which explicitly mentions and references
differences types of nuts (e.g., peanuts, macadamia nuts). Further, with an ASK SPARQL query, we
can illustrate the potential of our reasoner compared to usual keyword-based approach (e.g., butternut
squash is not a nut).

Output data: A SPARQL result (Listing 10.7) is returned by the Jena framework when the generic
SPARQL query is executed. The result can be easily parsed (by any developers, even with no semantic
web expertise) and returned through web services. Listing 10.7 is a simple output example providing:

• SemanticAnnotationType is the explicit information added by the semantic annotation component
with a set of rules to deal with synonyms (precipitation = rainfall), descriptions (t=temp=tempera-
ture), typo issues, etc. It is also compliant with the kAO ontology.

• Deduce is the result returned once the inference engine is executed with a set of rules that provide
higher abstractions.

• Suggest is the result provided by the generic SPARQL query executed when rules have been inter-
linked with external domain ontologies and data sets.

The implementation use case for asthma, obesity, and sleep disorders: To implement the rule
data set, we investigated the literature in-depth to acquire knowledge from domain experts (air qual-
ity, pollen, outside environment, inside environment, etc.). The data set of rules is summarized in
Table 10.3.

The current implementation is tested with various use cases to interpret different data types (as
depicted in Fig. 10.5 and Fig. 10.6) to demonstrate the genericity of the reasoner: (1) pollen, (2) air
quality, (3) inside temperature, (4) outside humidity, (5) heart rate (6) steps count, (7) food caloric level
(8) snoring level, (9) body mass index, (10) peak expiratory flow, and (11) sleep disorder breathing.

We are integrating more and more scenarios in Table 10.3. Progressively, we will obtain a generic
application comprising the components (ontology, semantic annotator, rule-based engine) compatible
with each other.
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FIGURE 10.5

Scenarios supported by the health reasoner (pollen data, air quality, outside humidity, heart beat, inside room
temperature, snoring level, food caloric level, steps count, body mass index, sleep disorder breathing).

FIGURE 10.6

The health reasoner enriches raw data with high level abstractions and suggestions.

10.4.2 KAO ontology evaluation
To develop the ontology, we follow FAIR principles, criteria, and best practices recognized by the
semantic web community: (1) ontology methodology developments [36,37], (2) the International Se-
mantic Web Conference (ISWC) Resource Track [WR17] encourages FAIR principles for ontology
submissions, and (3) the PerfectO methodology [38,39] [WR18].

Ontology methodologies recommend defining the competency questions. The primary purpose of
designing the ontology in our project is to infer high-level abstractions from sensor data. The inference
engine executes a set of rules (Table 10.3) compliant with the kAO ontology.

ISWC Resource Track guidelines: The kAO ontology has been evaluated following the semantic
web best practices preconized by the ISWC Resource Track guidelines, which provide the following
criteria: (1) impact, (2) reusability, (3) design and technical quality, and (4) availability.
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Table 10.4 Table from SemWeb Best Practices for Dummies with PerfectO [WR19] (Part I).

Rule num-
ber

Description Difficulty Status

Rule 1 Finding a good ontology name * DONE (kao.owl)

Rule 2 Finding a good ontology name space ** DONE (http://purl.org/kAO#)

Rule 3 Sharing your ontology online ** DONE

Rule 4 Adding ontology metadata ** DONE

Rule 5 Adding rdfs:label, rdfs:comment, *

dc:description for each concept and property DONE

Rule 6 All classes should start with an uppercase * DONE

and properties with a lowercase.

Rule 7 Submitting your ontology to ontology catalogs ** ONGOING

Rule 8 Reusing and linking ontologies *** DONE

(see above all ontologies reused)

Rule 9 Dereferenceable URI **

copy paste the namespace URL of your

ontology in a web browser to get the code DONE

Rule 10 Checking syntax validator * DONE

Rule 11 Adding ontology documentation * ONGOING

Rule 12 Adding ontology visualization * ONGOING

Rule 13 Improving ontology design *** ONGOING

Rule 14 Improving dereferencing URI and content
negotiation

*** ONGOING

Rule 15 Protege ontology editor *** DONE

(can be loaded under Jena and Protege)

Legend: DONE means that the kao ontology is integrated with the tools mentioned. ONGOING means additional efforts are required
(e.g., incompatibility issues to fix).

• Impact and reusability: The kAO ontology has been exploited in various scenarios (as demonstrated
above). Automatic documentation can be provided with the LODE tool; the kAO documentation is
available [WR16].

• Design and technical quality: The kAO ontology is being validated with a set of validation tools
designed by the semantic web community. The design of the ontology is available online [WR36] as
a graph visualization with WebVOWL. We have improved the ontology with the Oops tools, which
automatically detects common pitfalls and provides recommendations to fix them. Oops employed
with our kAO ontology can be tested online. The Vapour tool integrated with the kAO ontology has
been used to check dereferencing URI and content negotiation. Finally, TripleChecker checks that
the use of existing ontologies has been correctly used within our kAO ontology.

• Availability: The ontology is published at a persistent PURL URL. PURL is highly encouraged to
define the ontology URL, so that the ontology can be hosted on different servers, and PURL offers
URL redirections.

http://purl.org/kAO#
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Best practices with PerfectO: We have also followed the PerfectO methodology [38], which syn-
thesizes a set of additional best practices and eases their achievements with the step-by-step tutorial
[WR38] that helps improve the ontology. The set of fifteen best practices suggested by PerfectO is
summarized in Table 10.4. The first column indicates the rule number, the second column describes the
rule, the third column provides the difficulty level to follow the rule from 1 to 3, and the fourth column
indicates if the rules are supported or not with two options DONE or ONGOING. For instance, rule 3
encourages to share the ontology online, which has been done: http://purl.org/kao.

10.5 Discussions and extensions for future work
Digital Phenotype Score discussion and it’s use case. The kHealth team developed a set of scores for
the asthma pediatric patients [4]: (1) symptom score, (2) rescue score, (3) controller compliance score,
(4) activity score, (5) awakening score, (6) asthma control test score, and (7) digital phenotype score.

Technical limitations of the reasoner. Several extensions are possible to improve this work: (1)
Enriching the health reasoner with additional scenarios, diseases, etc., (2) extending the semantic anno-
tator to support heterogeneous data formats, and (3) reasoner reliability (consistency and completeness),
and proving suggestions (e.g., by keeping the provenance of the facts).

Health reasoner enriched with additional scenarios: Measurement types that are supported are
shown in Table 10.3. The first column illustrates measurement types for the health projects: peak
flow, air quality, pollen index, outside humidity, inside temperature, sleep (REM, light sleep, deep
sleep, number of minutes active), CO2, activity (minutes active, sedentary minutes, minutes lightly ac-
tive, number of steps), outside temperature, inside humidity, ozone, VOC, and PM 2.5. If the kHealth
projects aggregate more data, apparently the new data type must be supported to deduce abstractions
when the reasoner is executed. The second column illustrates the high-level abstraction (e.g., high
pollen level) inferred by the inference engine to interpret simple values (most of the time just a num-
ber). The third column indicates knowledge provenance (e.g., scientific publications, website) to infer
high-level abstractions.

Semantic annotator extension to support heterogeneous data formats: Our assumption is that raw
data sets were in the SenML/XML format. Our automatic semantic annotator needs to be extended to
support raw data sets and heterogeneous formats (CSV, JSON, Google Sheets, etc.) and heterogeneous
ways to describe data and metadata. Integrating solutions such as SPARQL-Generate [WR34] can help
achieve this extension.

Reasoner reliability (consistency and completeness): The inference engine can be enriched with ad-
ditional rules to cover more data sets. However, consistency and completeness must be maintained. We
currently perform a manual checking [WR28a]. When several knowledge sources are defining the same
measurement, we exploit the range designed by experts providing fine-grained rules. For instance, one
source of knowledge is defining eight rules to interpret data, while a second source of knowledge only
three rules, then we will ignore the second source of knowledge. The refinement of the recommendation
system is considered as future work.

http://purl.org/kao
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10.6 Conclusion
The PHKG will assist patients and clinicians, as a long-term vision, in automatically interpreting a very
broad variety of data (EHR and IoT) that can be relevant to a multifactorial disease such as asthma for
developing a personalized digital health application.

PHKG is integrated within an architecture and a methodology, which is supported by a prototype
and a tutorial. The architecture is comprised of three main components: (1) a semantic annotator to
unify heterogeneous data set sources and formats according to the kAO ontology, and (2) a rule-based
reasoner to automatically infer abstractions from data sets, and (3) a generic query engine to retrieve
smarter data according to the data type (e.g., pollen level). The three components are compliant with
the kAO ontology. The ontology-based reasoner for personalized healthcare is an innovative solution
to integrate various domains and knowledge.

Short-term challenges: The rule-based PHKG is designed for the asthma disease but could be
extended to predict diagnosis, provide more recommendations, and applied to other conditions (e.g.,
obesity, dementia, epilepsy, and Parkinson’s).

Mid-term challenges: Working on efficiency and scalability of the proposed approach. Additional
knowledge can be integrated with natural language processing and machine learning/deep learning
techniques by semiautomatically extracting knowledge from scientific publications, or any relevant
sources.

Long-term challenges: The methodology to build the personalized knowledge graph could be gen-
eralized to be applied to other domains such as agriculture with smart irrigation to deal with different
crop types, robotics in smart homes for aging people, smart energy, etc. For instance, Google is de-
signing a research agenda on personal knowledge graphs [40], and adopted the ideas/built upon our
personalized health knowledge graph work [9].
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Appendix 10.A Listings: code example

1 "_index": "currentpollenbymonitoringsites",
2 "_type": "pollen",
3 "_id": "AV4bMcjbj1AKCoZ−TYub",
4 "_score": 1,
5 "_source": {
6 "pin": {
7 "location": "39.006735,−84.623182"
8 },
9 "timestamp": "2017−08−25T21:00:01.111Z",

10 "Pollen_Index": 10.4,
11 "WunderGround": null}}

Listing 10.1: Pollen data set example in JSON.

1 <zone name="Environment">
2 <senml bn="urn:body:uuid:c68ad78b−09eb−4303−ae3c−d5d23149ee96">
3 <e n="pollen" t="0" u="X" v="10.4"/>
4 </senml>
5 </zone>

Listing 10.2: Pollen data set example in SenML/XML.

1 [PollenLevel: (?measurementUri rdf:type kAO:PollenLevel)
2 <−
3 (?measurementUri sosa:observedProperty "pollen")
4 (?sensor m3:produces ?measurementUri)
5 (?sensor m3:observes m3:Environment)
6 ]

Listing 10.3: Pollen data set semantically annotated to be compliant with the KAO ontology.

1 [HighPollenLevel:
2 (?measurement rdf:type kAO:PollenLevel)
3 (?measurement sosa:hasSimpleResult ?v)
4 greaterThan(?v,9.7)
5 lessThan(?v,12)
6 −>
7 (?measurement rdf:type kAO:HighPollenLevel)
8 ]

Listing 10.4: Rule example to deduce high-level abstraction from the pollen data set.
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1 <owl:ObjectProperty rdf:ID="hasRecommendation">
2 <rdfs:label xml:lang="en">hasRecommendation</rdfs:label>
3 <rdfs:comment xml:lang="en">used for the kHealth recommender system (e.g., high pollen level −> do not go out)</

rdfs:comment>
4 </owl:ObjectProperty>
5

6 <owl:Class rdf:ID="HighPollenLevel">
7 <rdfs:label xml:lang="en">High Pollen Level</rdfs:label>
8 <rdfs:comment xml:lang="en"></rdfs:comment>
9 <rdfs:subClassOf rdf:resource="#PollenLevel"/>

10 <kAO:hasRecommendation rdf:resource="http://purl.org/kAO#DoNotGoOut"/>
11 </owl:Class>
12

13 <owl:Class rdf:ID="DoNotGoOut">
14 <rdfs:label xml:lang="en">Do Not Go Out</rdfs:label>
15 <rdfs:comment xml:lang="en">Do not go out when pollen is high.</rdfs:comment>
16 </owl:Class>

Listing 10.5: Linking cross-domain knowledge to provide suggestions.



10.A Listings: code example 217

1 PREFIX kAO: <http://purl.org/kAO#>
2 PREFIX sosa: <http://www.w3.org/ns/sosa/>
3 PREFIX qudt: <http://qudt.org/schema/qudt#>
4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
5 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
6 PREFIX dc: <http://purl.org/dc/elements/1.1/>
7

8 SELECT DISTINCT ?name ?value ?unit ?semanticAnnotationType ?deduce ?suggest ?suggest_comment ?deduceUri ?
suggestUri WHERE{

9 ?measurement sosa:observedProperty ?name.
10 ?measurement sosa:hasSimpleResult ?value.
11 ?measurement sosa:resultTime ?time.
12 ?measurement qudt:unit ?unit.
13 ?measurement rdf:type ?semanticAnnotationTypeUri.
14

15 OPTIONAL {
16 ?semanticAnnotationTypeUri rdfs:label ?semanticAnnotationType.
17 FILTER(LANGMATCHES(LANG(?semanticAnnotationType), "en"))}
18

19 OPTIONAL {
20 ?measurement rdf:type ?deduceUri .
21 ?deduceUri rdfs:label ?deduce.
22 FILTER(LANGMATCHES(LANG(?deduce), "en"))
23 FILTER(str(?deduceUri) != str(sosa:ObservableProperty) )
24 FILTER(str(?deduceUri) != str(?semanticAnnotationTypeUri) )
25

26 OPTIONAL{
27

28 ?deduceUri kAO:hasRecommendation ?suggestUri . # e.g high pollen −> do not go out
29 ?suggestUri rdfs:label ?suggest.
30 FILTER(LANGMATCHES(LANG(?suggest), "en"))
31 OPTIONAL{
32 ?suggestUri rdfs:comment ?suggest_comment. #dc:description
33 FILTER(LANGMATCHES(LANG(?suggest_comment), "en"))
34 }
35 }
36 }}

Listing 10.6: Generic SPARQL query example to retrieve data semantic annotated with the kao ontol-
ogy and enriched once the reasoner is executed.
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1 <?xml version="1.0"?>
2 <sparql xmlns="http://www.w3.org/2005/sparql−results#">
3 <head>
4 <variable name="name"/>
5 <variable name="value"/>
6 <variable name="unit"/>
7 <variable name="semanticAnnotationType"/>
8 <variable name="deduce"/>
9 <variable name="suggest"/>

10 <variable name="suggest_comment"/>
11 <variable name="deduceUri"/>
12 <variable name="suggestUri"/>
13 </head>
14 <results>
15 <result>
16 <binding name="name">
17 <literal datatype="http://www.w3.org/2001/XMLSchema#string">pollen</literal>
18 </binding>
19 <binding name="value">
20 <literal datatype="http://www.w3.org/2001/XMLSchema#decimal">10.4</literal>
21 </binding>
22 <binding name="unit">
23 <literal datatype="http://www.w3.org/2001/XMLSchema#string">X</literal>
24 </binding>
25 <binding name="semanticAnnotationType">
26 <literal xml:lang="en">Pollen Level</literal>
27 </binding>
28 <binding name="deduce">
29 <literal xml:lang="en">High Pollen Level</literal>
30 </binding>
31 <binding name="suggest">
32 <literal xml:lang="en">Do Not Go Out</literal>
33 </binding>
34 <binding name="suggest_comment">
35 <literal xml:lang="en">Do Not Go Out when pollen is high.</literal>
36 </binding>
37 <binding name="deduceUri">
38 <uri>http://purl.org/kAO#HighPollenLevel</uri>
39 </binding>
40 <binding name="suggestUri">
41 <uri>http://purl.org/kAO#DoNotGoOut</uri>
42 </binding>
43 </result>
44 </results>

Listing 10.7: XML result returned as a suggestion.
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX kao: <http://purl.org/kao#>
3 PREFIX schema: <https://schema.org/>
4 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
5

6 SELECT DISTINCT ?patientURI ?patientLabel ?patientComment ?riskFactorLabel WHERE{
7 ?patientURI rdfs:label ?patientLabel.
8 ?patientURI rdfs:comment ?patientComment.
9

10 ?patientURI kao:hasRiskFactor ?riskFactorURI. # to consider allergies
11 #?riskFactorURI can be replaced by <http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#Nuts>.
12 #?riskFactorURI can be replaced by <http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#Gluten>.
13 #?riskFactorURI rdfs:label ?riskFactorLabel.
14

15 ?patientURI rdf:type schema:Person
16 }
17

18 # RDF example:
19 # <owl:NamedIndividual rdf:about="http://purl.org/kao#Patient_scenario_test_allergy_nut">
20 # <rdfs:label xml:lang="en">Patient scenario test has allergies (e.g., nuts).</rdfs:label>
21 # <rdfs:comment xml:lang="en">Patient scenario test has allergies (e.g., nuts).</rdfs:comment>
22 # <rdf:type rdf:resource="https://schema.org/Person"/>
23 # <kao:hasRiskFactor rdf:resource="http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#Nuts"/>
24 # <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019−01−16</dcterms:modified>
25 # <dcterms:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019−01−16</dcterms:issued>
26 # </owl:NamedIndividual>

Listing 10.8: A patient has risk factors (nuts, pollen, etc.): SPARQL query and semantic annotation
example.
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX food_taxonomy: <http://kmi.open.ac.uk/projects/smartproducts/ontologies/food_taxonomy.owl>
3

4 ASK WHERE{
5 <http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#ButternutSquash> rdfs:subClassOf <http://kmi.

open.ac.uk/projects/smartproducts/ontologies/food.owl#Nuts>.
6 #?nutURI rdfs:label ?nutLabel.
7 }
8

9 # RDF example:
10 # <!−− http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#ButternutSquash −−>
11 #
12 # <owl:Class rdf:about="http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#ButternutSquash">
13 # <rdfs:label>Butternut Squash</rdfs:label>
14 # <rdfs:subClassOf rdf:resource="http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl#WinterSquash"/>
15 # </owl:Class>
16

17 # returns false

Listing 10.9: A keyword-based approach will deduce that butternut squash might make me a nut, but
not a knowledge graph-based approach. This ASK SPARQL query example checks if butternut squash
is a nut and returns false.

1 phkg−rule := [ruleName : analyze−phkg−data]
2

3 analyze−phkg−data := term, ... term −> inferred−data // forward rule
4

5 inferred−data := term or [ base−rule]
6

7 term := (node, node, node) //triple pattern
8 or functionComparison node, ... node) // e.g., greaterThan
9

10 node := phkg_type
11 or uri−ref // e.g., http://example.com
12 or prefix−localname // e.g., rdf:type
13 or <uri−def> // e.g., <mySchema:myUri>
14 or ?varname // variable
15 or ’a literal’ // a plain string literal
16 or ’lex’^^typeURI // a typed literal, xsd:∗ type anmes supported
17 or number // e.g., 42 or 25.5
18

19 phkg_type := measurement // e.g., kao:Temperature
20 or unit // e.g., kao:DegreeCelcius
21 or domain // e.g., kao:Health

Listing 10.10: Syntax of rules.
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Appendix 10.B Tutorials: SPARQL queries and End-to-End Scenarios
Hereafter, a set of tutorials developed using the PHKG (e.g., kao ontology). A set of SPARQL queries
are provided and illustrated with the asthma, obesity, or food-related diseases (Figs. 10.7–10.11).

FIGURE 10.7

Example of SPARQL query tutorials for asthma disease to get patient information.

FIGURE 10.8

Example of DESCRIBE SPARQL query tutorials to retrieve more information.

FIGURE 10.9

Example of SPARQL query tutorials for the obesity disease.
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FIGURE 10.10

Example of SPARQL query tutorials for food-related diseases (e.g., allergy to nuts). It also demonstrates the
potential of reusing food-related knowledge bases (e.g., SMART PRODUCTS project).

FIGURE 10.11

End-to-end scenarios to semantically annotate IoT data sets (e.g., air quality, pollen, humidity, temperature)
and enrich data sets with abstractions by executing the reasoning engine (e.g., HighPollenLevel).
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11.1 Introduction
Maternal, neonatal, and child mortality reduction is a key target of the third Sustainable Development
Goal (SDG), which aims at improving health and general well-being of people and nations [1]. As the
duration for actualizing this goal gradually winds down, assessment of progress reveals uneven mo-
mentum among the committee of nations. While developed nations have achieved substantial progress
on this goal, the efforts of developing countries are adjudged to be grossly insufficient [2]. In low-
and medium-countries such as Nigeria, the level of implementation has slowed down tremendously,
coupled with the poor health system and the unavailability of automated services to drive real-time
clinical data and research on maternal, neonatal, and child health (MNCH). Furthermore, the over
dependence on manual information and lack of technological innovation in the health sector has hin-
dered the implementation of intelligent analytics, sufficient for mining the highly unstructured data
generated by health facilities to support informed decision making and policy formulation. Informa-
tion is highly required for decision-making processes, but intractable to acquire from unstructured data,
except the use of intelligent reasoning processes are applied [3]. An enormous amount of data is con-
stantly generated at health facilities manually and some trundle out to the web daily with available
technologies [4]. Though much of these data in computer readable form are unstructured, they con-
tain valuable information with potential impact when processed. The information derived from such
data are useful for decision making, policy formulation, and more. As researchers continue to work
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toward developing reasoning and data mining techniques for information extraction from unstructured
data, more areas needing such attention and applied knowledge continue to emerge [5]. Methods pro-
posed in the literature and results from these methods have achieved different data extraction tasks
from unstructured text, as there are great potentials in filtering unstructured data into a structured form.
Nevertheless, the obvious time-consuming nature of manually filtering unstructured data could lower
trust and accuracy—as individuals are bound to express themselves differently thereby exhibiting dif-
ferent reasoning patterns and varying semantic protocols that produce a diverse representation of ideas.
In domain-specific contexts typical of a health system, most patients’ information for instance, are
documented in a natural language, and which recording pattern permits a mixture of free, short- or
long-hand, textual form, but can be clustered around certain attributes or fields such as patient name,
age, sex, location, symptoms, doctors’ notes/diagnose, and more. The key to an accurate documen-
tation of unstructured patients records therefore rest on the following activities synonymous with the
objectives of this study, including: (1) converting the textual materials into a machine-readable format,
(2) resolving constraints surrounding the extraction of unique records, (3) indexing the textual data on
recognized parts-of-speech, (4) creating a sound representation for establishing relation(s) between key
elements of the text/data. (5) supporting decisions using an extracted knowledge graph that generates
pointers to the key attributes of the system. As the health sector advances toward the Internet of Things
(IoT), the most flourishing technology, with healthcare introducing a myriad of real-time applications,
the major benefits derived from this technology include:

1. Simultaneous reporting and monitoring—including smart medical/healthcare services in real-time.
2. End-to-end connectivity and affordability—automating healthcare and patient healthcare workflow

through healthcare mobility solutions, enabling interoperability, machine-to-machine communica-
tion, information exchange, and enhanced data transport for a more cost-effective healthcare service
delivery.

3. Intelligent data crowdsourcing and analytics—managing a huge amount of data (structured and un-
structured) requires an intelligent system to manage data collected in real-time through IoT-enabled
mobile devices. This will reduce the collection of raw data and drive vital healthcare analytics and
data-driven insights, for informed decision making.

4. Embedded service tracking and alerts—real-time tracking and alerts in life-threatening situa-
tions can safeguard patients in critical condition. With constant notifications and real-time alerts,
proper/early monitoring, analysis, and diagnosis of patients’ condition is achieved.

5. Remote medical assistance—connecting to a doctor due to distance and lack of knowledge/infor-
mation is made possible by the IoT-enabled mobility solutions. With this solution, proper medical
assistance will be a button away and patients can take medical prescriptions at home through health-
care delivery chains connected to patients through IoT devices.

IoT are not without challenges, given the numerous components embedded in this technology and
the principle that these components must synchronize to produce the desired benefits. Hence, top on
the list of challenges of IoT in healthcare include:

1. Data security and privacy—most IoT-enabled mobile devices capture data in real-time; hence, they
lack adherence to data protocols and standards. Significant ambiguity regarding data ownership and
regulation also exists. As such, data stored within IoT-enabled devices are prone to data thefts and
may compromise personal health information.



11.2 Related works 229

2. Multiple devices and protocols integration—integrating multiple device types can cause hindrance
in the implementation of IoT in the healthcare sector, because some device manufacturers are yet to
reach a consensus regarding communication protocol and standards.

3. Data overload and accuracy—the nonuniformity of data and communication protocols presented by
multidevice types stiffens the aggregate of data for vital insights and analysis. This in turn affects
decision-making processes in the long run.

4. Cost-costs constitute one of the greatest challenges when developing an IoT app development for
healthcare solutions. However, the return on investment from the developed system overshadows
the costs.

The purpose of this research is to create a context-aware ontology that generates location-based
representations from unstructured/semistructured data for supporting informed healthcare decisions
and Internet of Health Things (IoHT). The contributions of this research to the growing field of
medicine/healthcare include:

1. Availability of semi-structured MNCH data sets. Recently, we have excavated patients’ clinical
records directly from patients’ files to build a semistructured MNCH data set. These data sets, which
are meant to advance future research progress in the field, are available in a comma separated value
(CSV) file and is currently being refined to serve as domain-specific data sets for the sub-Saharan
African region. To ensure consistency of the records, the data sets were normalized and assigned
unique record sequence numbers.

2. Integrated ontology-based framework. An ontology-based framework is proposed in this chapter
to drive a knowledge base that generates spatiotemporal events for enhancing decision support
systems. The knowledge extraction process is preposition enabled and useful for representing ge-
olocation information.

3. Knowledge base for decision support systems. Creating suitable ontologies would drive intelligent
analytic systems in a data-driven approach and serve the unmet needs of the health sector. The ben-
efits of this solution are numerous as a more precise Smart medical assistant, sufficient for driving
semantic processes of IoH services is certain.

The remainder of this chapter is structured as follows. Section 11.2 considers related works in
the field and outlines the necessary gaps to fill. Section 11.3 presents the PeSONT framework and
discusses the tools and components of the system. Section 11.4 documents the PeSONT, highlighting
the concepts, sub-concepts, objects, and data properties, including cross references among the concepts.
Section 11.5 discusses the designed PeSONT in relation to state-of-art. Section 11.6 concludes on the
research and offer future research perspectives.

11.2 Related works
Natural language processing (NLP) systems are generally inaccurate at resolving the numerous chal-
lenges that trail natural languages. Natural languages systems pose severe problems for machine learn-
ing and intelligent systems and can sometimes lead to a misclassification of related-concepts or features
of the system. These misclassifications render decision support systems ineffective, as a seemingly high
rate of false positive or negative alarms are produced. Some major challenges inherent in natural lan-
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guages include: (1) contextual words, phrases, and homonyms, (2) synonyms, (3) irony and sarcasm,
(4) ambiguity (lexical, semantic, syntactic), (5) text and speech errors, (6) colloquialisms and slang, (7)
domain-specific language, (8) low-resource languages, and (9) dearth in research and development.

In [3], sentences containing prepositions could either be spatial, geospatial, or nonspatial. While
nonspatial prepositions do not describe or point to a location, spatial prepositions identify locations
that are mostly within proximity (i.e., not geographically distinct). Geospatial prepositions on the other
hand describe locations that are geographically distinguishable from another. Related research works
[6–9] have focused on geospatial identification and extraction from text.

Place description is a conventional recurrence in conversations involving place recommendation
and person direction in the absence of a compass or a navigational map. A place description provides
locational information in terms of spatial features and the spatial relations between them. When place
descriptions are verbally performed, automatic extraction of spatial features might be more difficult
due to non-satisfaction of locative expression requirements. However, when such place description
is present in natural language text, the location can easily be extracted because of the unavoidable
prepositional inclusion in the written description. This inclusion of a proposition before location naming
and description is referred to as locative expression [10]. Although spatial descriptor identification
is easy for any fluent language speaker, several computational algorithms are still inefficient in this
regard.

Kordjamshidi [6] proposed the pipeline joint learning approach for spatial sense identification us-
ing a triple of located object, spatial relation, and reference location. From the reference location, an
object’s position is identified and extracted as either spatial or geospatial content using the spatial rela-
tion.

On information extraction from plain text, Adnan and Akbar [11] opines that supervised learning,
deep learning, and transfer learning techniques are the most suitable techniques to apply. An inter-
esting clause in utilizing these methods is that the data set for information extraction has to be large
for the efficient visualization. To perform similar information extraction operations on small data sets,
the named entity recognition technique has been identified to be effective. Named entity recognition
is a process where entities are identified and semantically classified into precharacterized classes or
groups [11]. The corpus-based extraction performed in Hou et al. [12] corroborates Adnan and Akbar
[11] but adopts a graph-based approach to data extraction for automatic domain knowledge construc-
tion. Their method, called GRAONTO, utilized a domain corpus consisting of documents with text in
the natural language for information terms classification. With an intension to eliminate the manual
time-consuming procedures of ontology design by knowledge engineers and other researchers, Markov
clustering and random walk terms weighting approaches were adopted for concept extraction. On-
tologies showed relations between terms or entities, hence the gSpan algorithm was used for relation
extraction through subgraph mining.

Similarly, [13] presented a semiautomatic method for domain ontology extraction from Wikipedia.
The similarity in both works lies in their direction of automatic ontology development even though
different domain ontologies were considered.

To improve and run an effective healthcare delivery system supported by technology, a patient-clinic
path mapping is useful. Such support system will enable patients to digitally visualize and consider
paths to a choice health facility. Mapping patient location to a health facilities location would aid
the identification of medical facilities and promote health equity among the populace. Furthermore,
resources and healthcare personnel can be effectively managed [14]. To efficiently represent MNCH
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information and create a path link to a health facility location for semantic search, an ontology is
required.

To provide a solution to the patient-clinic path mapping limitation, [17] highlighted the lack of
georeferenced information and a comprehensive public health facility database for sub-Saharan Africa.
They proposed a spatial inventory of public health facilities in the region. Their database is reported
to have populated a collection of health facilities in over 50 countries in the region, including gov-
ernmental and nongovernmental owned. In developing the multimethod geocoded inventory of health
facilities in sub-Saharan Africa, [17] consulted the Ministries of Health websites including related data
warehousing portals. Hu et al. [18] presented a modified random walk algorithm for location-based ser-
vice delivery to users. They implemented an ontology-based design using current context information
to determine the user’s preferred location. In a similar study, [19] utilized spatiotemporal information
from travelers’ photos to discern decision about a traveler. Context awareness has also been of concern
in the design of location-based ontologies. In Roussaki et al. [20], the use of ontologies for a locational
object representation exhibits prominent advantages in integrated pervasive environments, resulting in
the ever-improving application of GIS technologies in mobile environments for location identification
and tour guides. Such technologies have been very useful for time management during location iden-
tification, and for providing new entrants into a city, personalized information about landmarks and
venues for events.

To enable smart healthcare delivery services, there is need for a formal representation of clinical
data ranging from clinical resources to patients’ health records, including location information. IoHT
devices capture heterogeneous data, which would certainly affect the quality of ontologies designed.
Mishra and Jain [21–23] conclude that ontologies should be semantically analyzed by evaluation to
ensure the design, structure, and incorporated concepts and their relations are efficient for reasoning.
They proposed the use of QueryOnto for ontology verification and validation. Tiwari and Abraham [24]
designed a smart healthcare ontology (SHCO) for healthcare information captured with IoT devices.
They however adopted an integrated approach for the evaluation of SHCO and utilized evaluation tools
like Themis and Test-Driven Development (TDD) Onto for verification of the test cases while Protégé
and object-oriented programming (OOP) were used for validation of the modeled knowledge in the
ontology.

Panchal and his colleagues [25] designed an ontology for Public Higher Education (AISHE-Onto)
by using semantic web technologies OWL/RDF and SPARQL queries have been applied to perform
reasoning with the proposed ontology.

In Lee et al. [26], an activity ontology that focused on determining the shortest path between an
outdoor or indoor location and an indoor destination of interest was presented. The design connected
a road/outdoor network model with an indoor topological network model to produce a 3-dimensional
GIS-based topological model whose data comprised university indoor activity locations that can be
shared, managed, and queried semantically.

11.3 Preposition-enabled spatial ontology: PeSONT
Since clinical notes were targeted at providing improved MNCH information, the proposed PeSONT
provides a general domain ontology for health services where MNCH resides. An ontology is con-
structed using OWL (the Web Ontology Language), which classifies the extracted data and formally
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FIGURE 11.1

PeSONT framework.

specifies the concepts and their relations in the medical domain based on the data collection form
for hospitals and clinics. The use of an open-standard format such as OWL allows this framework to
support and improve spatial data interoperability and bring about both syntactic and semantic interop-
erability (i.e., it assists in transferability (reuse) of knowledge and rules). The ontology is created using
Protégé [27]—a free, open source, platform-independent environment, or web editor for creating and
editing ontologies and knowledge bases implemented using the OWL 2 Web Ontology Language [28].
Our PeSONT framework is a model of spatial/locational items relating to MNCH services and obtained
from unstructured texts such as MNCH clinical notes, using a PeNLP parser algorithm [29]. As pre-
sented in Fig. 11.1, the context-based (geographic) locations such as patients’ residential locations and
locations of health facilities within the study area are outputs from PeSONT required for useful decision
making and policy formulation. To accomplish the study design, geolocations of available health facil-
ities for Uyo metropolis were retrieved from the Nigeria Health Facility Registry (HFR) ([30]; https://
www.hfr.health.gov.ng) while the unstructured Maternal, Neonatal and Child Health (MNCH) input
data to the PeNLP parser were retrieved from patients records at St. Luke’s General Hospital, Anua,
Uyo, Akwa Ibom State (Approval Ref: SLH/ADM/PC/VOL.1/344/21/005). The Health Facility Data in
Akwa Ibom State obtained from National Health Registry Database are used as concepts, subconcepts,
and instances in the PeSONT. Test cases in the TDDOnto [31] evaluation clearly show these domain
concepts. The extracted features (locational items) are then classified based on the underlying reasoning
in the health service ontology (PeSONT), from where the geolocations are filtered and visualized.

https://www.hfr.health.gov.ng
https://www.hfr.health.gov.ng
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11.3.1 Concept extraction
One reason for geospatial data mining is to make the extracted knowledge explicit and easily de-
scribable. In most cases, semantic search both within proprietary archives and generally accessible
repositories uses keywords to locate and retrieve resource. Hence, an end-user needs to correctly pro-
vide the predetermined keywords to retrieve expected resources. However, solutions that consider the
meaning of terms behind a user query have been proposed. For solutions in the latter category, ontology
remains the underlying technology. Using ontology, geospatial entities from unstructured or semistruc-
tured natural language text are connected or linked to their meaning derived from the knowledge base
[5]. With such linkage, semantic search can follow a top-down approach where the ontology interprets
users queries and enriches them with other meaningful terms using ontology concepts and their rela-
tions [32]. Furthermore, because geospatial ontologies should be designed to support integration into
broader contexts, Claramunt [33] advocates that the explicit representation of abstracted concepts and
their relations from reality, formally and allowing numerical notation using symbolic grammars alone
is not enough; hence, ontologies should favor interoperability and knowledge sharing between different
applications.

11.3.2 Term formalization
Ontology research has moved beyond the strict formalization of geospatial concepts under specific
domains to the shared interpretation of meanings across different contexts and the development of
lightweight and microontologies tailored toward specific needs [5]. Needs are domain specific and their
adoption in recent studies goes beyond their ability to identify entities from natural language text to
producing/explaining relations between two entities. An ontology for traditional Ayurvedic medicine
was proposed in Gayathri and Kannan [34]. The ontology sought to provide a formal structuring for
heterogeneous data on Ayurvedic medicine available in literature. However, structuring such medi-
cal information can produce knowledge vital for diagnosis and intervention in therapeutic conditions.
Within unstructured and semistructured natural language texts, the same terms are useful to reference
similar but different concepts and several concepts can be used to refer to a particular term by differ-
ent individuals. Ontologies eliminate such limitation and ensure terms describing the same concept are
formally represented for appropriate knowledge extraction with a computer-based solution.

11.3.3 Location visualization
Advances in technology is today phasing out paper maps, the same way images are fast dominating
text in information presentation and dissemination. For visualization, the proposed PeSONT uses third
party software. A visualization of geotagged coordinates is extensively demonstrated in Usip et al. [29].
In [7], extensive geospatial data ontology (GeoDataOnt) for geospatial data integration and sharing is
presented; the authors, however, were not successful in direct application of the extracted knowledge
from geotext in decision support. PeSONT on the other hand, can extract and visualize geoconcepts.
PeSONT adopted the UTM GEO MAP, a simple GPS module designed for getting coordinates in
an offline state without internet or cellular access. This module takes advantage of the built-in GPS
of handheld devices, and displays in real-time, the latitude, longitude, Universal Transverse Mercator
(UTM), MGRS, and all commonly used coordinate reference systems in the world (using EPSG Codes).
In future research, IoT-based ontologies such as SSN and SAREF. [35,15] will be used.
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FIGURE 11.2

Health service ontology.

The MNCH care is among the various health services rendered in health facilities and the proposed
PeSONT seeks to identify spatial components that are peculiar to this domain. PeSONT is not limited to
locations of MNCH patients and facilities only since MNCH services are also available in other health
service categories. Hence, Fig. 11.2 presents the health service ontology implementing PeSONT. The
developed PeSONT has a total of 531 axioms (logical and declaration), 160 classes being concepts,
155 subclasses, 13 object properties, 1 data property, and 50 individuals. In Fig. 11.2, the major con-
cepts of the ontology include: health_service, patient/user, health_facility, location, human_resource,
and health_condition/sickness, while the subconcepts include: Physical_address, GPS_coordinate, Cat-
egory, Ownership, Registered_name, Level, Status, Facility_Type, Service_Type, etc. The following
relations are part of the ontology, takes/receives, works_in, has, offers, belongs_to, visits, includes,
resides_in, is_a, situates_at, and can_be. Relations are classified as either object properties or data
properties. The individuals in the ontology captured at the ontology development stage use protégé.
The Class hierarchy of the developed ontology with the TDDOnto evaluation tab featuring the sample
test query is presented in Fig. 11.3. The evaluation tab considers all the axioms of the ontology (e.g.,
MNCH_Care SubClassOf Health_Service, Maternal SubClassOf MNCH_Care, Neonatal SubClassOf
MNCH_Care, Child SubClassOf MNCH_Care, Service_Type SubClassOf Health_Service, Location
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FIGURE 11.3

PeSONT showing class hierarchy and TDDOnto evaluation results.

SubClassOf Health_Facility, GPS_Coordinate SubClassOf Location, etc.) and their results, to validate
the health service ontology.

11.4 PeSONT documentation
A documentation of the ontology is formally described in this section where the object properties
are clearly linked to their domain and range. The version of PeSONT documented in this chapter is
available on bioportal and can be accessed with the link: https://bioportal.bioontology.org/ontologies/
PESONT.

Summary: PeSONT is a model that describes health services with related concepts, subconcepts,
attributes, and relations among concepts. Inferences of new knowledge are possible using queries.

Introduction: PeSONT classifies linguistic place terms using [16] and uses prepositions of English
language for location identification. Its implementation is to further the application of the PeNLP parser
on human related problems by classifying place-like terms in natural language and for extracting ge-
olocations.

PeSONT Overview: The proposed ontology has the following concepts/ subconcepts in Table 11.1,
and properties in Table 11.2, and named individuals are discussed in Table 11.3.

Cross Reference Description among concepts and properties:
User/Patient: A user/patient visits the Health_Facility in search of Health Services such as MNCH care,
which includes maternal, neonatal, and child healthcare.

https://bioportal.bioontology.org/ontologies/PESONT
https://bioportal.bioontology.org/ontologies/PESONT
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hasSuperClass: Health_Service
hasSubClass: Health_Condition, Location, Health_Facility, Health_Service
isinDomainOf : visits, receives, resides_in, has
isinRangeOf : is_given_to
Health_Service: This has to do with the services offered in Health_facility for patients with their vari-
ous Service_Types and categories
hasSuperClass: User/Patient, MNCH_Care
hasSubClass: Service_Type, Categories, Health_Facility
isinDomainOf : hasbelongs_to, Offers, is_given_to
isinRangeOf : is_a, Receives
Health_Facility: The Health_Facility situates_at Location and offers Health_Service
hasSuperClass: User/Patient, Health_Service, Human_Resource
hasSubClass:Status Level, Location, Registered_Name, Facility_Type, Ownership
isinDomainOf : has situates_at
isinRangeOf : works_in, Offers, visits
Location: Location includes Physical_Address and GPS_Coordinates
hasSuperClass: User/Patient, Health_Facility
hasSubClass: Physical_Address, GPS_Coordinates
isinDomainOf : includes
isinRangeOf : resides_in, situates_at
MNCH_Care: MNCH-Care is an example of Health_Service
hasSuperClass: Health_Service
isinDomainOf : is_a
Health_Condition/Sickness: A Patient has Health_Conditions with symptoms, cause. Note that,
Health_Service is meant to treat Health_Conditions but they do not have direct links except through
the patient
hasSuperClass: User/Patient
hasSubClass: Cause, Treatment, Symptom, Prevention, First_Aid
isinDomainOf : has
isinRangeOf : has
Human_Resource: Human Resource works_in Health_Facility. They have locations but this is not rel-
evant to Health_Service since they are identified under the Health_Facility they serve under. Also,
they render Health_Service to patients but they do not have direct link but to patients that visit the
Health_Facility. Human resources can_be Doctor, Nurse, Pharmacist, etc.
hasSuperClass: Health_Facility
hasSubClass: Doctor, Dentist, Pharmacist, Pharmacy_Technician, Dental_Technician, Nurse/Midwive,
Health Attendant/Assistant
isinDomainOf : works_in, can_be

The description of cross references among the subconcepts will be available as readme.txt file with
the published ontology. Table 11.4 provides a comparison of this study with similar state-of-the art
tools. We compare the data sets, objectives, NLP methods, evaluation, and geotools adopted and main
findings.
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Table 11.1 Concepts/subconcepts.

User Patient Health_Service

Health_Facility Location Human_Resource

MNCH_Care Service_Category Service_Type

Medical Surgical Dental

Pediatrics Specific_Clinic_Service Obstetrics_and_Gynecology

Other_Service Maternal Neonatal

Child Ownership Facility_Type

Facility_Level Facility_Status Registered_Name

Physical_Address GPS_Coordinate Longitude

Latitude Health_Condition Cause

Prevention First_Aid Treatment

Symptoms Operational Registration

Licensed Doctor Nurse

Midwife Dentist Pharmacist

Dental_Technician Pharmacy_Technician Health_Attendant

Table 11.2 Object properties.

is_a (data property) has belongs_to

can_be offers Visits

receives is_given_to resides_in

includes works_in situates_at

is_offer_by

Table 11.3 Named individuals (generally stated individuals).

In_Patient Out_Patient Primary

Secondary Tertiary Etc.
Sample individuals are:
PM1 St. Luke’s Hospital Anua, Uyo

11.5 Discussion
While other methods exploit unintelligent methods such as direct encoding and geotext/geo images,
this study (PeSONT) integrates intelligent reasoning for mining unstructured data. This study however
has similarity with state-of-the-art as it exploits the prevailing evaluation tool, the TDDOnto. Currently,
we adopt a simple geolocation capturing tool (UTM Geo Map) but will explore IoT-based tools in the
future. To the best of our knowledge, none of the state-of-the-art has deployed practical data sets and
maintained confidentiality in knowledge extraction with a prototype of the decision support framework.
These are achieved in the present study, which offers a cost-effective MNCH decision-support system
that will enhance healthcare policy decisions and support disease surveillance measures. The present
study builds on a preposition enabled natural language parser, PeNLP [38,29], which integrates intel-
ligent reasoning using a web-based application that mines spatial data from unstructured text. Spatial
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Table 11.4 Comparison of PeSONT with similar state of the art tools.

Ref. Data set Objective NLP
methods

Evaluation
tool

Geo Tool Findings

[24] Health Data SHCO Direct
Encoding

TDDOnto,
OOPs

IoT Devices Smart healthcare service

[7] Geospatial
data

GeoDataOnt Geotext/
GeoImage

– – Data Integration and
sharing

[15] Generic SSN and
SAREF

– W3C
Standardized

Sensors Ontological
requirements and
semantic translations

[35] Generic SSN and
SAREF

– W3C
Standardized

Sensors Ontological
requirements and
semantic translations

Proposed
Work

Unstructured
MNCH Data
HFR
Database

PeSONT PeNLP TDDOnto UTM Geo
Map

Confidentiality in
knowledge extraction,
data availability and
cost-effective decision
support system

concepts were identified and extracted from unstructured text using prepositions beyond the IN-ON-AT
[36,37] preposition pyramid. Furthermore, Usip et al. [39] further adapted the parser to extract tempo-
ral data from natural language text to extract spatiotemporal knowledge from rape news articles for
decision support.

Elementary morphologic characteristics of geospatial data [7] such as spatial accuracy and coor-
dinate reference are thoroughly handled in PeSONT via on-site coordinate acquisition for onward
geotagging to ensure locational accuracy when its descriptive spatial term is extracted from natural
language text and juxtaposed on visualization media. Latitudes and longitudes of MNCH facilities
retrieved from the Nigerian Health Facility Registry enable MNCH facility tracking and navigation.
Beyond geospatial tagging and mapping for coordinates guided location of geographic objects, Miao
et al. [9] proposed a method for geospatial resource discovery. Granted that some geospatial resources
are held in organized databases, identification and sharing of resource(s) is tedious and time consum-
ing, as existing search methods use keywords for database query. Different from PeSONT where the
spatial resource is extracted from plain text in a natural language without a particular structure, Miao et
al. [9] extracts the geospatial resource from metadata, which already contain some predefined format
according to ISO standards. Furthermore, while PeSONT uses prepositions as the underlying technique
for geospatial term identification, the OGDSSM model uses semantic similarity. Although the ontology
by Gayathri and Kannan [34] elaborately represents knowledge in the concerned domain, the imple-
mentation of the ontology to the semantic web is not discussed. Their work did not also consider or
identify any underlying techniques for “hit” words identification and extraction from the unstructured
or semistructured natural language text. These limitations are catered for in the proposed PeSONT
framework.

In maintaining proper and elaborate facility description, accurate coordinate determination is crucial
for correct facility geocoding—as one of the biggest challenges encountered during on-site geocod-
ing of rural healthcare facilities is accurate coordinate determination. However, the categorization
of geospatial health research using a geographic positioning system (GPS), [40], can resolve this
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challenge. Yasobant et al. [41] agreed that proper spatial representation of clinical data enhances geo-
visualization for improved healthcare. Geovisualization involves the use of visual aspects of spatial
information for building knowledge of the environment using a holistic approach [42]. Given the co-
ordinates of a MNCH facility, many persons may be unable to arrive at the location. However, with
a map, same persons might get better insights on appropriate routes to take. More so, given a digital
map with navigational guidance, the individual will hardly miss the route. Visual directions therefore
are immensely important in locating the physical position of objects and facilities if patients or visitors
must be interactively guided to given health facilities. For a more accurate on-site geocoding to enable
geospatial inclusion and GPS tracking, an ontological representation of clinical data and geolocations
is more robust and reliable.

An interesting part of Lee et al. [26] is its utilization of ontology to describe, annotate, and build
structured and formalized geocoded information, which enables a 3D visualization and selection of
shortest path between two points. The contribution of the authors showed that main and alternative
routes to designated MNCH centers can be ontologically represented and geocoded into an online
database supporting structured natural language data representation for easy semantic query by pa-
tients. Using ontology, geospatial entities from unstructured or semistructured natural language text are
connected or linked to their meaning derived from a knowledge base [5]. With this linking, semantic
searches can follow a top-down approach where the ontology interprets users queries and enriches them
with other meaningful terms using ontology concepts and their relations [32]. Even though geospatial
ontologies should support integration into broader contexts, Claramunt [33] advocates that explicitly
representing concepts and relations abstracted from reality—formally and allowing numerical notation
using symbolic grammars alone is not enough, but ontologies should also favor interoperability and
knowledge sharing between different applications. This research therefore ensures that beyond the tar-
get domain of MNCH the proposed ontology can be extended to formally represent knowledge in other
medical specializations and beyond.

Focusing on MNCH facilities location would specifically help reduce the search time by users to
target health facilities during emergency medical situations. Furthermore, an effective spatial healthcare
solution requires a correct enumeration of the healthcare facility and a traceable location description. It
has been observed that the cornerstone of a viable health system entails the definition of the location of
health services in relation to the communities to be served. Whereas this assertion would be valid for
new health services being developed for a community, the cornerstone for an already existing commu-
nity’s health service would be proper and elaborate path description with priority and alternative routes
based on unique condition.

One reason for geospatial data mining is to make the extracted knowledge explicit and easily de-
scribable. In most cases, semantic searches both within proprietary archives and generally accessible
repositories use keywords to locate and retrieve resource(s). Hence, a search requires predetermined
keywords to retrieve expected resources. However, solutions that consider the meaning of terms behind
a user query have been proposed.

While information from national health resource platforms (cf. [17]) could be accepted as authori-
tative, data held on these platforms are sparse with most of these representing facilities located in cities
and suburban areas. The implication is that there is no proximity to healthcare facility for rural dwellers;
hence, emergency response healthcare will remain a mirage for rural dwellers. Additionally, the gen-
erated database excluded privately owned healthcare facilities on the grounds that the facilities were
difficult to audit and that their enumeration and regulation were challenging. The generated database
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from [17] is however generic and without filters for specialized health facilities, signifying longer search
time for health facilities within the database, verbose search space, and difficulty in providing accurate
spatial description that is vital for easy navigation to desired health facility.

11.6 Conclusions
Ontologies can contribute immensely to the development of healthcare through the structured knowl-
edge base they generate. They are usually applied to describe the concepts of medical terminologies
and the relation between them; hence, enabling shareability of medical knowledge. PeSONT, a general
schema for reasoning about the health services offered to MNCH care patients with various health con-
ditions was developed. The locations of both the patient and the health facility were carefully extracted
from MNCH clinical notes (unstructured data) using the PeNLP parser and stored in a corpus to aid
the retrieval of relevant information for informed decisions by stakeholders (policy makers, healthcare
providers, government, etc.). Further works include MNCH data mining using the proposed context-
aware ontology for health information discovery and efficient healthcare delivery. The ongoing project
is focused on the extension of PeSONT and its application on food recommendations by addressing
“eating habits” of patients as a preventive measure for most critical MNCH conditions or sicknesses.
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12.1 Introduction
The World Wide Web has experienced a significant transformation and continues to do so. Web 1.0,
also known as the Web of Documents period, was the first generation of the internet. It had connec-
tions between documents. The second-generation Web 2.0, often known as the Social Web, included a
connection between user profiles. Web 2.0 is the phrase that refers to a collection of web pages, web-
sites, web services, social networks that are formed by an extensive network of computers. It allows
anyone on the interconnected network, i.e., the internet, to access, share, create, download resources
and data from the web. Web 2.0 facilitates users to access information via hyperlinks. A hyperlink,
also known as a web link, is any object or text that directs toward another resource or document. The
internet is made up of hyperlinks that connect billions of sites and data. With the advent of Web 3.0,
which emphasizes the internet of objects rather than the internet of computers, there is a call of way to
organize and manipulate vast amounts of data so that the computer system could extract the knowledge
efficiently and effectively. Ontology is a way of representing and describing domain information as
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classes and relationships. It encapsulates the domain’s different concepts as well as the relationships
between them. Ontology provides a framework for connecting the various forms of data on the internet,
allowing for information interoperability, interdatabase search, streamlined knowledge generation, and
sharing from widely dispersed data sources. Web 3.0, which is still growing, allows the network of all
web objects, i.e., the web of data. Knowledge of real-world environments is crucial for intelligence, and
it is required for AI entities to demonstrate intelligent behavior. Only if a machine has expertise com-
prehending knowledge or competence with the data can it respond correctly. Ontology, for instance,
could describe ideas, entity relationships, and object categories. These integrated semantics provide
significant benefits such as data reasoning and working with diverse data sources, while these standards
encourage uniform data formats and web interchange methods, particularly RDF. Web 3.0 refers to
the connections between data and entities. It also introduces Semantic Web, making digital material
machine-readable, allowing for a more intelligent and linked web. RDF and OWL are the tools that
will propel us toward this Web 3.0 goal. To standardize metadata representation, several approaches
are used. Ontology is an essential component of the Semantic Web and Web 3.0, as it is also used to
generate a knowledge graph. A knowledge graph is a data model in which nodes represent data and
connections represent relationships between them. By describing the structure of the information avail-
able inside the topic, the ontology sets the basis for acquiring the essential information. As there is a
substantial increase in big data now, companies are exploring new approaches to leverage this data to
their benefit with machine learning. ML techniques are frequently employed to uncover knowledge to
get insight into the problem, ultimately leading toward more effective decision making. The models
have constraints associated with them ranging from processing efficiency and lack of transparency and
usability since specific systems only operate in particular situations. For example, if an AI system is
used to shortlist candidates for a job, neither could it establish a solid reason for its decisions, nor could
the algorithm’s creator.

Explainable AI is emerging swiftly as we pace toward the Web 3.0. It is considered the third wave
of artificial intelligence that enables us to arrive at the solution for a machine learning or deep learning
problem that humans can understand and explain. The current AI algorithms are considered a black box
as even the algorithm’s designer could not reason out why the algorithm has arrived at the particular
solution. eXAI tends to enhance the user experience, and people’s trust in AI systems as it could provide
the explanation model and an explanation interface as its output. XAI’s objective is to describe what
has already been done, what is being done now, what would be done next, and reveal the evidence on
which the actions are based. This is especially significant in fields such as medical, military, finance,
and law, where understanding judgments and building faith in algorithms are critical. Explainable AI
also enables us to affirm and dispute existing knowledge, produce new assumptions, and unveil biases
in the data. This paper presents a novel method to formulate ontologies for various domains belonging
to healthcare and medical sectors.

The remainder of the chapter is organized as follows. Section 12.1 includes the introduction. Sec-
tion 12.2 encompasses the related work. The proposed modeled is presented in the third section of the
chapter and the implementation of the proposed approach is presented in the fourth section. The fifth
section contains the results. Finally, Section 12.6 concludes the chapter.
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12.2 Related works
Aguilar et al. [1] propose an ontology, CAMeOnto, designed and developed based on the 5Ws concepts:
where, why, what, who, when. The proposed ontology is an introspective middleware for context-aware
applications. It has been implemented in various case studies to demonstrate how CAMeOnto operates
perfectly and, therefore, can rationale to deduce insights into the context. Fahad et al. [2] explicate on
the linking of idea class formulations and offers a method enabling the unification in an autonomous
ontological fusion procedure that does not need human involvement. Priya et al. [3] present a novel
technique termed HSSM (hybrid semantic similarity measure) based ontology merging based on se-
mantic similarity measures and formal concept analysis. In the realm of ontology engineering, there are
several general merging requirements (GMR). Babalou et al. [4] compiled a list of the most frequent
GMRs and categorized them into 3 components. Because not all GMRs can be fulfilled concurrently,
they offer a mechanism, which enables users to identify the most relevant GMRs for their given job
and thereafter finds the greatest acceptable subgroup of GMRs. This result obtained is utilized to ei-
ther pick a suitable merging technique or parameterize a universal merger mechanism. Chatterjee et al.
[5] designed a architecture to enable easy merging of ontologies. Agriculture is characterized as major
domain, with numerous subcategories like crops, fertilizer, etc. as add-ons. They also illustrate how
scheme software is superior to the well-known Protégé. Nakhla et al. [6] introduce a novel technique
to automate database enrichment built on an ontology that models topics through collections of ideas
and the semantic links between them. Schoormann et al. [7] highlight how computational linguistics
approaches may be used to create domain-specific modeling tools that can deal with these difficulties
automatically. They also offer a procedural framework that was created and tested in four sessions, pro-
pose resources, techniques, and materials, and remark on common difficulties. Pal et al. [8] provide an
all-inclusive method for extracting learning metadata from a educational video. A semiautomatic ap-
proach that combines mechanical and computational techniques to retrieve the metadata and evaluate
its contents is proposed. Along with establishing a set of particular metadata elements from IEEE LOM,
few more extra characteristics are recommended to analyze the appropriateness of a video-based edu-
cational object in terms of a learner’s customized preferences and compatibility. Xue et al. [9] highlight
the ways in which environmental data is collected with the advancements of sensor technology and the
emergence of a plethora of sensor ontologies. Their work also presents how the ability to perform se-
mantic interoperation among the sensor ontologies is hindered because of their heterogeneity and how
it affects the applications of the sensor ontologies. Rani et al. [10] developed two novel topic modeling
approaches, LSI and SVD and Mr.LDA, to facilitate easy learning of topic models. Their primary goal
is to identify the statistical link between the document and words to create a subject ontology and on-
tological network with as little human interaction as possible. The efficacy of the suggested technique
is demonstrated by an experimental investigation of constructing a topic ontology and recover the most
related topic ontology to the user’s query word. Xingjun et al. [11] developed a model using the grey
wolf optimization algorithm to provide a unique fuzzy-based solution for data congestion reduction in
cloud-based IoT technologies. Franz et al. [12] explore the complexities and limitations in construct-
ing a biological TAXONOMY incorporated into an ontological reasoning framework. Semantic latent
analysis was incorporated by Pushpa et al. [13] to measure the ontological relevance. Content-based
filtering was used to improve the quality of the proposed framework. These tools have been used to
increase the overall efficiency of semantic web content recovery. Nasution et al. [14] have presented an
already existing idea of ontology, as well as a mathematically based technique to producing a subject
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model that supports existence. Tikhamarine et al. [15] conducted a study where the primary goal is to
offer an effective hybrid system that combines the optimization algorithm of grey wolves with other AI
models. Zhang et al. [16] proposed a minimally supervised system for text categorization with metadata
that uses a generative process to explain the relationships between words, records, marks, and meta-
data. Liu et al. [17] has reviewed the application and development of topic models for bioinformatics,
and the article describes the steps involved in creating the application. He stated that while there are
no topic models suited for specific biological data, studies on topic modeling in biological data have a
long and difficult road ahead, but that topic models are a promising technique for many applications in
bioinformatics research. Steyvers et al. [18] has referred to the latent semantic analysis and the three
assertions of the LSA method that semantic information can derive from a cooccurrence matrix of the
word document, that the reduction in dimensionality is an essential component of such a derivation, and
that words and documents are represented in Euclidean space as points. Wallach et al. [19] show that
frequently used approaches are unlikely to properly estimate the probability of held-out documents, and
present two alternative methods that are both accurate and efficient. In [20–26] several Ontology and
Knowledge Centric Models in support of the literature of the proposed framework are depicted.

12.3 Proposed model
12.3.1 Phase 1
Fig. 12.1 depicts the first phase of the architecture for the generation of domain ontologies for special-
ized medical or specialized healthcare domains. Since the metadata is vast, massive volumes of data
are created as obtained straight from the internet, and for each word in the RDF, there is a tremendous
demand for metadata classification. Domain indicators are collected from the contents or indexes of a
medical textbook to categorize information. Several textbooks are utilized, spanning from radiology to
biostatistics and radiology of physics to community medicine, gastro-ontology, dermatology, oncology,
and other medical backgrounds. Keywords directly from the textbooks are extracted and utilized as
domain indicators. Domain indicators and a preprocessed set of words are fed into the transformers,
which classify the metadata under each class reflecting the features and provide the top 50% classified
occurrences. A crawling index from a medical textbook is utilized to generate the terminology from
which the keywords are extracted using TF-IDF. Since the domain is a high risk like healthcare, a lot
of care and attention is required, along with the verification required for ontology modeling. Ontology
verification and ontology generation of the healthcare domain are vital because health is one of the sci-
entific domains where high risk is represented. Since it is a vulnerable domain, any case of a miss form
or miss formulated ontologies leads to series of consequences. As a result, a semiautomatic approach
that incorporates humans in the middle approach for semiautomatic ontology modeling for technique.

Since the domain is the healthcare domain, several domains such as medical science and pharma-
ceutical are considered core domains for healthcare. So in this approach crawled medical journal, i.e.,
journal representing medical sciences, the recent 10 years have been crawled directly via the medical
journal itself or via google scholar. So the data contained in the medical journal is subjected to pre-
processing tokenization, lemmatization, stop word removal, word sense disambiguation, and named
entity recognition is performed. Textbooks, e-books of several specializations like radiology, commu-
nity medicine, gastro ontology, dermatology, oncology, etc., belonging to core medical sciences subjects
are incorporated. Their e-books are also used as sources of modeling ontology. So, from the medical
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FIGURE 12.1

Phase 1 of the proposed IntelliOntoRec framework.

journal, once preprocessed, the index words are obtained. RDF is generated for all the index words, or
the marker keywords used for indexing in the preface of keywords in the medical journal and textbook.
The diagram illustrates the first step of the architecture for developing domain ontologies for special-
ized medical or specialized healthcare domains. Since healthcare is one of the scientific fields where
high risk is represented, ontology verification and ontology development in the healthcare sector are
critical. It necessitates a great deal of care and attention, in addition to the verification necessary for
ontology modeling. Since it is a fragile domain, any misformed, or incorrectly constructed ontologies
have a cascade of repercussions. Consequently, a semiautomatic strategy for the ontology modeling
technique involves humans in the intermediate approach. Since the topic is healthcare, numerous do-
mains, including medical science and pharmaceutical, are considered essential domains for healthcare.
So, in this approach, the last 10 years of crawling medical journals, i.e., journal representing medical
sciences, have been crawled directly via the medical journal itself or via Google Scholar. As a result,
the data in the medical journal is preprocessed using tokenization, lemmatization, stop word removal,
word sensed disambiguation, and named entity recognition. Textbooks and e-books from a variety of
specialties, including radiology, community medicine, gastroenterology, dermatology, oncology, and
surgery, as well as fundamental medical sciences courses, are included. The e-books are often utilized
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as ontology modeling resources. The index words are acquired from the medical journal after it has
been preprocessed. All index terms or marker keywords used for indexing in the medical journal and
textbook introduction are converted to RDF. As a result of preprocessing the crawled medical jour-
nal repository, RDF is created in the index words. The OntoCollab is then used to produce RDF. So,
XML structure is completed, followed by XML to RDF conversion. The CntoCollab generates RDF
from global data as well as user and community-contributed cloud sources. So the XML extracts pre-
processes constructs from OntoCollab. Structured XML is created, which is then transformed to RDF.
GREDL and RDF distiller are used to generate metadata from RDF. The purpose of creating meta-
data is to include every possible aspect of online knowledge into the framework. Furthermore, because
metadata covers every possible RDF possibility, a large amount of knowledge will be generated, which
can be converted into knowledge and further incorporated into the framework to reduce the cognitive
gap of the background knowledge between the contents on the World Wide Web and contents incorpo-
rated into the framework and cognitive gap is reduced. Although metadata is generated for all RDF, it
is a massive quantity of data that requires classification and further preprocessing, refining, and classi-
fication before it can be utilized for any further recommendation. In addition, predefined relationships
between entities are already accessible in semantic cookies. Thus, entity population and connection,
as well as establishing relationships among entities, are computed using semantic wikis. Wikidata and
MediaWiki are the two semantic wikis that are employed. The inclusion of semantic wikis guarantees
that knowledge density is significantly higher in the framework and that the cognitive gap between
global knowledge and knowledge included into the system is much less. As a result of the RDF pro-
duction of metadata and the inclusion of semantic wikis into the framework, the additive knowledge
into the framework is considerably greater, and nearly every kind of entity relationship and their precise
placement into the framework are validated and utilized in the proposal.

12.3.2 Transformer architecture
Transformer is a type of neural network architecture that was introduced to overcome several short-
comings of the recurrent neural networks. RNNs are slow to train because of its intense truncated
backpropagation through time. They are also not very effective dealing with long sequence inputs due
to the problems such as the vanishing gradient and exploding gradients. Vanishing gradient occurs dur-
ing back propagation when multiplication of small derivative values yields in a very small value that
cannot be stored in the memory. Although LSTM neural networks are later introduced to effectively
deal with longer sentences by incorporating a memory unit, it is slower than the RNN due to its high
complexity. In either of the networks discussed above, the input data must be processed sequentially or
serially one after the other. Also, then any hidden state requires some input from its previous state to
make operations on its current state. Such sequential or serial processing of inputs does not efficiently
exploit the power of modern computer GPUs, which are designed to facilitate parallel processing. One
core objective of the transformer architecture is to enable parallel computation for processing sequen-
tial data. Transformer adopts a similar type of network architecture as that of LSTMs and RNNs but
the units in the input sequence can be passed parallelly. Transformer architecture has two main parts:
encoder and decoder. All of the units of the input sequence are passed simultaneously to the transformer
and the word embeddings are generated for them consequently. Embedding space is a space that con-
tains the word vectors in such a way that similar words are grouped together spatially. It is used to map
a word to a vector. Positional encoders are used in transformers as the same word in different sentences
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with different meanings and have the same word embeddings. Positional encoders are used to generate
a context vector based on the position of the word in the sequence. The input word is preprocessed and
converted to its corresponding word embedding. Information from the positional encoders is further
added to the embeddings. It is then passed to the encoder block where it goes through a multiheaded
attention layer and a feed forward layer. Attention techniques help the model to emphasis more focus on
the important parts of the sequence. Attention vector of the ith input unit captures the relevance of the
ith unit among other units of the input sequence. Attention with respect to itself is called self-attention
and such attention vectors can be generated for each input unit in the sequence. These attention vectors
are found in the attention block of the encoder, which is used to capture the contextual relevance among
the units in the input the sequence. These attention vectors are then passed through a feed forward neu-
ral network. The neural network converts the attention vectors into a form that can be comprehended by
the encoder block or the decoder block. Similarly, in the decoder end, the embedding for each word is
generated using the input embeddings and positional vectors are added to capture the notion of context
of the unit in the sequence. Upon adding the positional information, these vectors are then passed to the
decoder block where attention vectors are generated based on self-attention mechanisms. Finally, the
attention vectors from the encoder and decoder blocks are passed to the encoder-decoder attention layer
to generate an attention vector for each unit in input sequences for the encoder and the decoder blocks.
The resulting attention vector captures the relationship of each unit in the input sequence of encoder to
each unit in the input sequence of the decoder unit and vice versa. Each attention vector is then passed
to a feed forward neural network to make the output layer more comprehensible for the further layers.
The next layer is a linear feed forward layer, which passes the data to a SoftMax layer to transform it
to a probability distribution. This is how a sequence-to-sequence translation is performed using trans-
formers. In this research study, we implemented transformers using Pytorch to perform classification
task.

12.3.3 Phase 2
Fig. 12.2 illustrates the architecture for phase 2 of integrating healthcare domain knowledge with aux-
iliary associated ontologies. There are several ontologies in various domains such as healthcare, phar-
maceutical, general medicine, dermatology, community medicine, nuclear medicine, radiodiagnosis,
pediatrics, obstetrics, gynecology, biostatistics, gastroenterology, neurology, nephrology, rheumatol-
ogy, cardiology, pulmonology, etc. These ontologies are generated automatically using OntoCollab and
manually using web Protege from medical text-books. Existing ontologies are included and used for
further integration. These eBooks are summarized, and TF-IDF is applied to the contents of the summa-
rized eBooks. Ontologies are also incorporated using ready-made ontologies. Apart from this, 50% of
the categorized metadata from step 1 is also incorporated. Semantic wikis, RDF, and metadata are used,
and a large knowledge graph is created through reasoning with Shannon’s entropy and SemantoSim.
Since an enormous number of ontologies are included, a stringent threshold value for SemantoSim
and Shannon’s entropy is required to only let the most relevant items into the ontology to formulate
the knowledge graph. Data integration of ontologies is accomplished using agents, which are modeled
using AgentSpeak. Jade is used to calculate the agent’s state to compute Shannon’s entropy and the
SemantoSim measure. Shannon’s entropy is used with a minimum step deviation of 0.25 and a Se-
mantoSim threshold value of 0.75. Also, Shannon’s entropy and SemantoSim are used as objective
functions for the grey wolf search metaheuristic algorithm.
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FIGURE 12.2

Phase 2 of the proposed IntelliOntoRec framework.

The grey wolf optimization method is inspired by the grey wolves’ foraging behavior and leadership
structure. The organizational structure of grey wolves is divided into four divisions: P, Q, R, and S. The
grey wolf’s hunting process mainly consists of three phases in which optimization is achieved. Seeking
for prey, surrounding prey, and striking prey are the three steps. P is assigned to the first optimum solu-
tion. The second optimal solution is denoted as Q, while the third solution is denoted as R. These three
wolves are followed by the S wolves. The current iteration is specified by t . The equations included in
the algorithm are depicted from Eq. (12.1) to Eq. (12.13). The vector of the prey’s position is repre-
sented by Gq , G. r1 and r2 in Eqs. (12.3) and (12.4) are vectors with random values between [0,1].
Using Eqs. (12.8), (12.9), and (12.10), the search agent updates the location of P, Q, and R. Only P, Q,
and R are allowed to adjust the position of the prey. Other wolves change their location in the vicinity
of the prey at random. The top three best search agent’s solutions have been kept, as well as the other
search agents’ locations will be updated in relation to the best search agent’s position. SemantoSim and
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Shannon’s entropy are calculated as depicted in Eq. (12.12) and Eq. (12.13), respectively.

�Y = | �A.
−→
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SemantoSim(a, b) = pmi(a, b) + p(a, b) log([p(a, b)])
[p(a).p(b)] + log([p(a, b)]) (12.12)

H(X|Y) = −
n∑

i,j

P (xi, yj ) log
p(xi, yj )

p(yj )
(12.13)

12.3.4 Phase 3
Fig. 12.3 depicts the Phase 3 of the proposed IntelliOntoRec framework, i.e., Ontology Finalization
and Review. It is straightforward to incorporate and execute due to its uncomplicated basic storage and
computational needs. Also, the continual decrease of parameter space and reduced design alternatives,
only two control parameters, along with its ability to avoid local minima, leads to faster convergence.
These properties ensure the grey wolf metaheuristic algorithm is very robust and stable. Moreover, since
the SemantoSim semantic similarity measure and the Simpson’s diversity index are used as objective
functions over the grey wolf optimization algorithm, the two parameters of the grey wolf optimizer are
linked to SemantoSim and the Simpson’s diversity index the control for optimization in choosing the
most relevant entity among an environment of highly relevant entities from the knowledge graphs and
the domain or clue information conceived by a set of domain experts or similar users. The convergence
to optimality in selecting the most appropriate solution from a set of feasible solutions is quite distin-
guishable and reliable when grey wolf metaheuristics is applied. The reason why other optimization
metaheuristics are not used owes to the fact that some of them either have multiple parameters or mul-
tiple stage objective functions, or multiple crossover functions. Also, other metaheuristic algorithms
with two parameters can be feasibly applied, but we chose grey wolf as its intermediate steps are pretty
reliable with low computer requirements.
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FIGURE 12.3

Phase 3 of the proposed IntelliOntoRec framework i.e., Ontology Finalization and Review.

An empirical analysis based on the structure of the grey wolf optimization algorithm, its computa-
tional requirements, the feasibility of rendering solution sets from initial and intermediate solutions, the
feasibility of parameter tuning, the feasibility of parameter linking, a parametric coalition of the objec-
tive function with parametric tunability, linking of external objective functions into the native objective
functions of the grey wolf metaheuristics is analyzed based on its implications and applicability across
various problem domains. The derivation of solution sets and their intermediate steps were also ana-
lyzed empirically. Moreover, quantitative evaluation of the efficiency, scalability, and convergence has
not been conducted. The problem focuses on integrating knowledge from heterogenous sources across
a specialized domain and achieving a semiautomatic model with a human-in-the-middle approach for-
malized. Due to this, the focus of the quantitative evaluation is not on grey wolf optimization but on the
entire framework that has been proposed.

The necessity for ontology finalization and evaluation is mostly owing to healthcare being a high-
risk domain requiring medical ontologies. Any departure from the realities of the ontology might have
disastrous consequences. This is a human-in-the-middle method in which human intervention is nec-
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essary for ontology verification. Manual verification of ontologies may be time consuming, but it is
required. At any moment, any number of domain experts may be engaged and communicate with ex-
perts from other specialized fields. In addition to normal users, data farmers, knowledge engineers, and
domain specialists might work together to collect domain information or true terms from users. The se-
mantic similarity is computed based on SemantoSim and Simpson’s diversity Index under explainable
AI algorithm based on fluid thrust.

12.4 Implementation
The implementation of the proposed approach has been done in computer with i7 processor and 16GB
RAM. A modularity approach is followed in which most of the phases is implemented using latest
version of Python. The phase for Ontology aggregation and knowledge-base generation was imple-
mented using JAVA as it required the use of agents and also the RDF XML Ontology format class. A
module view controller pattern is incorporated, and the centralized knowledge bases are used. A cus-
tomized Java crawler is used for crawling the medical journals by using the results of Google scholar
and other specialized medical journals. Journal articles from 2008 to 2020 were all crawled under each
domain and are used for experimentation. The preprocessing was carried out using the Python’s nat-
ural language toolkit. Tokenization is performed by using customized Landspace character tokenizer
and lemmatization is done using the WordNet lemmatizer. Regular expression removal is used to re-
move the stop words and Stanford Names Entity Recognizer is used for Name Entity recognition. Word
Sense Disambiguation is carried out based on Corpus Lesk algorithm using the Semantic Concordance.
The RDF is generated using the OntoCollab and where the WWW open community forums, commu-
nity contributed ontologies, Linked Open Data Cloud, etc. are accessed. GREDL and RDF distiller are
used to generate metadata from RDF. Wikidata API has been used to get the wikidata and SPARQL
endpoints are written to gain access to the media wikis. Journals and articles from 1985 to 2020 have
been archived under several broad domain areas via Google Scholar using a customized web crawler.
AgentSpeak has been used for agent modeling and Pytorch is used for transformer implementation.

In this study, ontology belonging to the domain radiodiagnosis, pharmaceuticals, general medicine,
dermatology, community medicine, nuclear medicine, pediatrics, obstetrics and gynecology, biostatis-
tics, gastroenterology, neurology, nephrology, cardiology, rheumatology, pulmonology, otorhinolaryn-
gology, ophthalmology, geriatric medicine, orthopedics, and pathology are considered. Table 12.1
shows the number of classes and individuals found in ontologies of the domains considered in the
study. Algorithm 1 illustrates the algorithm for the proposed framework, IntelliOntoRec.

The parameter settings are utterly implicit for the grey wolf optimization as the concept of agent-
driven computation based on goal setting, goal achievement through the computability of the inter-
mediate states have been put forth. The agent is written using AgentSpeak and JADE with a state of
computing the semantic relatedness without compromising on the diversity, and the behavior of the
agent is to filter out the most appropriate entities among a set of relevant entities. To achieve this,
thresholding is the only parametric setting that applies to both the extrinsic objective functions: Simp-
son’s Diversity Index and SemantoSim measure. A threshold of 0.75 has been set for the SemantoSim
measure, a stringent threshold setting that allows only the most relevant entities into the framework to
conceive knowledge. The very stringent value for threshold is considered because the domain is sus-
ceptible, critical, specialized, and scientific. Similarly, a set deviation of 0.25 is chosen for Simpson’s
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Table 12.1 Details of concepts and individuals in the initial
seed domain ontologies used.

Domain ontologies No. of concepts No. of individuals
Pharmaceuticals 785 3123

General Medicine 2437 6684

Dermatology 3676 7812

Community Medicine 2481 4933

Nuclear Medicine 2431 9812

Pediatrics 1412 6771

Obstetrics and Gynecology 997 7611

Biostatistics 689 3872

Gastroenterology 1714 5102

Neurology 2481 4861

Nephrology 1419 3308

Cardiology 996 4112

Rheumatology 1687 5009

Pulmonology 1412 6134

Otorhinolaryngology 3372 7108

Ophthalmology 3919 8117

Geriatric Medicine 1716 2106

Orthopedics 1422 3040

Pathology 1799 3812

diversity index for the same reasons. The i7 processor with 16 GB RAM is highlighted because it is the
minimum requirement for the integrating agents and grey wolf optimization algorithm in an environ-
ment of such computability requirements. However, it is also an indication that high-powered GPUs or
other fancy collaborative computing environments powered by large-scale GPUs are not required.

12.5 Results
The proposed IntelliOntoRec’s performance has been assessed employing precision, recall, accuracy, F-
measure, FDR, and n-DCG as evaluation metrics. Precision, recall, accuracy, and F-measure essentially
belong to the class of retrieval and recommendation system. As a result, these measures are best related
when retrieval or recommendation is performed. Since ontologies are suggested in this case, this is one
of the best performance evaluation metrics that may be integrated if the ground truth of the ontologies
is maintained or validated. As a result, precision, recall, accuracy, and the f measure have been used
to calculate the relevance of the results. The FDR, which stands for False Discovery Rate, is related
with the error rate and quantifies the number of false positives recommended by the algorithm. As a
result, the FDR False Discovery Rate is employed. In this case, n-DCG computes the diversity of the
suggested results; the diversity in the recommended ontologies is utilized as a performance metric. In
addition to these performance measures, because ontologies are suggested, the reuse and reference rate
for each ontology is utilized as a prospective metric.
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Algorithm 1 The proposed algorithm of the IntelliOntoRec framework.
Input: Crawled Medical Journals
Output: Ontologies belonging to various medical domains.

Start
Step 1: Crawled medical Ontologies are preprocessed. Preprocessing includes Tokenization, Lemmatization, Named Entity
Recognition, Word Sense Disambiguation and Stop Words Removal.
Step 2: Obtain index words
Step 3: Generate RDF
Step 4: Generate Metadata
Step 5: Crawl index words to generate terminologies and obtain summarized content from medical textbooks to incorporate to
the Domain Ontologies.
Step 6: Incorporate wiki data and media wiki into semantic wikis
Step 7: Classification using Transformer on the features extracted from the domain Ontologies upon preprocessing and enriched
metadata.
Step 8: Integration of domain knowledge in health care with associated ontologies
Step 9: From medical textbooks, ontologies are created automatically with OntoCollab and manually with Web Protege.
Step 10: Half of the classified metadata from step 1 is also included.
Step 11: Using Semantic Wikis, RDF, and metadata, a huge knowledge network is generated by reasoning using Shannon’s
entropy with a minimal step deviation of 0.25 and SemantoSim with a threshold value of 0.75.
Step 12: The grey wolf search metaheuristic algorithm is employed with Shannon’s entropy and SemantoSim as objective func-
tions.

Randomly launch the population of the Grey Wolves
Set c, C, and A
Estimate the fitness for each agent X α {\displaystyle X_{\alpha}}
Yα = Entropy, T1X β {\displaystyle X_{\beta}}
Yβ = Morisita’s overlap index, T2
X δ {\displaystyle X_{\delta Yδ = Normalized Point Wise Mutual Information, T3

While (t {\displaystyle t} x < Maximum number of iterations)
For each search agent

Modify the location for T
end for;
Modify ca {\displaystyle a} c, A {\displaystyle A} C, and AC {\displaystyle C}
Evaluate the fitness of all T
Modify X α {\displaystyle X_{\alpha}} Yα , X β {\displaystyle X_{\beta}} Yβ , and X δ

{\displaystyle X_{\delta}} Yδ

x = x + 1
end while;

return X α {\displaystyle X_{\alpha}};
Step 13: In addition to regular users, data collectors, knowledge engineers, and domain professionals also collaborate to gather
domain information or actual words from users.
Step 14: Under an explainable AI system based on fluid thrust, semantic similarity is determined using SemantoSim and Simp-
son’s diversity Index.
Step 15: New Ontologies belonging to various domains in medical and healthcare sector are formulated.
End

HFOM [13] does not perform exceptionally well in terms of precision, recall, accuracy, FDR but
performs extensively well in n-DCG values because it is hybridized in nature. It includes latent seman-
tic analysis and content-based filtering as it is hybridized. However, HFOM’s content-based filtering is
less effective than the suggested technique. The synonym extraction agent, latent semantic analysis for
ontology topic modeling, ensures that the n-DCG is as high as possible, but the content-based filtering
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is not as effective as it could be. However, Dynamic Logic Formulation, Dynamic Logic induced ax-
iomatization, and domain knowledge acquisition via interdomain thesaurus ensure that n-DCG is quite
strong, whereas validating concepts based on content-based filtering are rather poor. If hybridization
is taken into account to enhance content-based filtering, the HFOM would have performed far better
than the other systems. Onto Yield is an ontology recommendation system that uses the SemantoSim
measure to match ontologies. SemantoSim is a superior metric than others as it alone is not insufficient
to incorporate relevance to results. There is also no lateral knowledge. This approach’s knowledge den-
sity is extremely low in comparison to other techniques. Thus, there is room for development through
increasing the incorporation of auxiliary information into the framework. As a result, OntoYield [22]
does not perform as expected. Still, incorporating OWL to XML, derivation of RDF and making this
knowledge RDF centric, and induction of description logics to the initially matching concepts and indi-
viduals ensures that this yields one of the high-quality ontologies. Still, precision, recall, accuracy, and
F-Measure has always a scope for improvement. It has a very low n-DCG of 0.91.

Improvement of n-DCG can be made with the improvement of other measures that can be done by
incorporating auxiliary knowledge from several heterogeneous sources into the framework. SAMO is
a semiautomatic approach of merging and producing ontologies using web Protégé. It includes only
the class reliance properties in Protégé by using PROMPT, where classes and individuals are merged
only based on the class type, individual type, and the relationship and the data property associated with
them. Quantifier restrictions and similarity alone are used, and finally, consistency checking has been
done using the merger available in Protégé. So, the merger, although it works well it yields very low
precision, accuracy and recall, and high FDR mainly for the reason that traditional and naïve similarity
algorithms and also there is no concrete reasoning mechanisms in terms of term similarity or concept
similarity, which should eternally be associated with the terms which incorporate ontologies into the
approach. As a result, SAMO has a large scope for improvement. SAMO has a very high n-DCG value
mainly because it focuses on topic modeling schemes.

STOL [20] incorporates LSI (Latent Semantic Indexing), Singular Vector Decomposition, Latent
Allocation for topic modeling to facilitate ontology learning. So, text to onto nil and OIE problems
are resolved. In this approach, the main core strategies employed are fuzzy coclustering and fuzzy
scale type 1 and 2 to facilitate semantic compliant retrieval. Topic and Word deflections are computed
using an ontology similarity and ranking approach. It is a full semantic approach with a very high n-
DCG value as it incorporates three distinct topic modeling schemes. The model records low recall and
accuracy value as it uses a fuzzy based coclustering algorithm. However, the results could be enhanced
by incorporating powerful semantic reasoning schemes to compute the ontological similarity.

SAMO [21] is a semiautomatic method for merging and generating ontologies using web Protégé.
It includes only the class reliance properties in PROMPT Protégé, where classes and people are merged
according to the class type, person type, relationship, and data property linked with them. Quantifier
constraints and similarity alone are utilized, and lastly, consistency testing is performed using the Pro-
tégé merger. So, while the merger works well, it yields very low precision, accuracy, and recall, as well
as a high FDR, owing to traditional and naive similarity algorithms, as well as the lack of concrete rea-
soning mechanisms in terms of term similarity or concept similarity, which should always be associated
with the terms that incorporate ontologies into the approach. As a result, SAMO has a lot of room for
development. SAMO has a very high n-DCG value, owing to its emphasis on topic modeling methods.
To assist ontology learning, STOL integrates LSI (Latent Semantic Indexing), Singular Vector Decom-
position, and Latent Allocation for topic modeling. This approach uses fuzzy coclustering and fuzzy
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scales of types 1 and 2 for semantic compliance retrieval. Topic and word deflection are computed using
ontologies, and the ontology similarity ranking approach has been used. So, it is an entire semantic ap-
proach with a very high n-DCG value because three different topic modeling schemes are incorporated.
While the recall and precision is low because a fuzzy-based coclustering approach is used wherein
this can be powerfully incorporated using semantic reasoning schemes with other semantic similarity
schemes that are much powerful in ontological similarity. This ensures the precision, accuracy, recall,
and F-Measure could be high with a low FDR.

The proposed approach is a highly specialized approach for high-risk domains like medical science
and healthcare. Healthcare is a part of pharmaceutical and medical science ontology. A full cover ap-
proach has been proposed by incorporating full content circles from medical journals, medical eBooks,
medical research papers, and medical domain experts. The proposed approach comprises an intuitive
approach and a human in the middle approach. For the automatic approach, Transformer, a deep learn-
ing algorithm, is used to facilitate learning. Metadata is generated along with media wiki data, and
wiki data is incorporated to include auxiliary knowledge. The initial knowledge graph is derived from
the various domains such as healthcare, pharmaceutical, general medicine, dermatology, community
medicine, nuclear medicine, radiodiagnosis, pediatrics, obstetrics, gynecology, biostatistics, gastroen-
terology, neurology, nephrology, rheumatology, cardiology, pulmonology, etc. These domains get the
content of the eBooks that are summarized and the preface or the index of the eBooks and also from
several research articles that are crawled from Google Scholar comprised of the same keywords in the
eBooks. As a result, the ontology is initially modeled, and in turn, a knowledge graph has been modeled
by combining the terms of vocabularies from all the sources. A generation of metadata ensures that the
hidden contents relevant to the domain from the world wide web are also uncovered, and a large amount
of metadata from the web structured linked open data of the semantic web is incorporated in the form
of indexes. So, as a result, the metadata generated ensures that every possible content under the full
cover search is infused into the system. Incorporation of Shannon’s entropy and SemantoSim with 0.75
thresholds and Shannon’s entropy with a step deviation of 0.25 is considered. However, the integration
is done via an agent, which is modeled using the AGENTSPEAK and JADE. It is evident that the agents
employed along with the SemantoSim and Shannon’s entropy to filter the contents that are deviating
from the step size of Shannon’s entropy and the threshold of SemantoSim and finalizing the content in
the form of Hash map separating them based on the key-value pairs by keeping the semantic similarity
alone as the value even for the instances that are incorporated based on Shannon’s entropy and Seman-
toSim. The axiomatization is done using an axiomatization agent where several relationships based on
“is a part of,” “as a part of” are taken into consideration, and axioms are infused into the terms to for-
mulate the ontology. The proposed approach facilitates learning using Transformer, which uncovers the
hidden instances, concepts, and individuals. Wikidata is also incorporated to enhance the density of the
entities along with the media wiki and incorporation of Shannon’s entropy, and SemantoSim makes the
proposed approach IntelliOntoRec highly powerful. The proposed model has heterogeneous sources of
information like eBooks, journals, and seed ontologies representing every domain. The approach has
several levels of users as it is a human in the middle approach, including data farmers, regular users,
domain experts, new users, naïve users, and knowledge engineers. These users, especially the domain
experts, are mainly used to interpret and review the modeled ontology. The approach does not include
just one domain expert but rather multiple domain experts. Based on the instant reviews made by the
top n domain experts, the solution is considered, and ontologies are formulated annually. Upon man-
ual formulation, Simpson’s diversity index, SemantoSim, is further used through the XAI-based fluid
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Table 12.2 Performance comparison of the proposed approach IntelliOntoRec model.

Search technique Average
precision

Average
recall

Average
accuracy

Average
F-measure

FDR nDCG

HFOM 87.46 90.38 88.92 88.89 0.12 0.94

OntoYield 92.43 94.69 93.56 93.54 0.07 0.93

STOL 91.17 93.63 92.40 92.38 0.08 0.94

SAMO 81.12 83.71 82.41 82.39 0.18 0.87

Proposed IntelliOntoRec 97.71 99.42 98.56 98.55 0.02 0.98

thrust algorithm to derive the solution sets, which is further passed for axiomatization and formulation
of ontologies. The reason for using an XAI-based fluid thrust algorithm with SemantoSim measure is
to incorporate only the highly relevant Ontologies among a wide variety of ontologies finalized by the
domain experts.

Thus, we could conclude that the proposed IntelliOntoRec is the best-in-class approach for formu-
lating ontologies.

Precision% = No. of Relevant and Accepted Ontologies into the system

Total No of Ontologies Accepted by the system
(12.14)

Recall% = No. of Relevant and Accepted Ontologies into the system

Total No of Relevant Ontologies Authored
(12.15)

F − Measure% = 2 ∗ Precision% ∗ Recall%

Precision% + Recall%
(12.16)

FDR = 1 − Precision (12.17)

The Precision, Recall, F-Measure, and FDR can be calculated as illustrated in Eq. (12.14),
Eq. (12.15), Eq. (12.16), and Eq. (12.17), respectively. The average precision value of the proposed
method, IntelliOntoRec is greater than HFOM by 10.25, OntoYield by 5.28%, STOL by 6.54%, and
SAMO by 16.59%. The average recall percentage of IntelliOntoRec is more remarkable than HFOM by
9.04%, OntoYield by 4.73%, STOL by 5.79%, and SAMO by 15.71%. The accuracy percentage of the
proposed approach is higher than HFOM by 9.65%, OntoYield by 5.02%, STOL by 6.17%, and SAMO
by 16.18%. The average F-Measure of IntelliOntoRec is higher than HFOM by 9.66%, OntoYield by
5.06%, STOL by 6.18%, and SAMO by 16.17%. The FDR of the proposed approach is lesser than
HFOM by 0.10, OntoYield by 0.05, STOL by 0.07, and SAMO by 0.17. The average nDCG score of
the proposed IntelliOntoRec is higher than HFOM by 0.04, OntoYield by 0.05, STOL by 0.04, and
SAMO by 0.11. Table 12.2 compares the performance of the proposed approach, IntelliOntoRec with
other baseline approaches considered in the study. Table 12.3 shows the performance metrics for each
domain.

The system conceives ontologies belonging to various domains. The domains furnished by the
proposed model include radiodiagnosis, pharmaceuticals, general medicine, dermatology, commu-
nity medicine, nuclear medicine, pediatrics, obstetrics and gynecology, biostatistics, gastroenterology,
neurology, nephrology, cardiology, rheumatology, pulmonology, otorhinolaryngology, ophthalmology,
geriatric medicine, orthopedics, pathology. The average precision percentage obtained for the domains
mentioned in the previous line are 96.32, 95.81, 97.32, 94.89, 98.39, 94.48, 99.81, 96.87, 95.99, 97.63,
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Table 12.3 Performance metrics for the individual ontologies furnished by the system.

Domain ontologies Average
precision
%

Average
recall %

Average
accuracy
%

Average
F-measure
%

FDR nDCG

Radiodiagnosis 96.32 98.32 97.32 97.30 0.03 0.97

Pharmaceuticals 95.81 97.32 96.56 96.55 0.04 0.98

General Medicine 97.32 99.33 98.32 98.31 0.02 0.96

Dermatology 94.89 96.21 95.55 95.54 0.05 0.97

Community Medicine 98.39 98.27 98.33 98.32 0.01 0.99

Nuclear Medicine 94.48 96.36 95.42 95.41 0.05 0.96

Pediatrics 99.81 99.93 99.87 99.86 0.001 0.95

Obstetrics and Gynecology 96.87 98.31 97.59 97.58 0.03 0.97

Biostatistics 95.99 97.37 96.68 96.67 0.04 0.98

Gastroenterology 97.63 99.36 98.49 98.48 0.02 0.96

Neurology 98.36 99.07 98.71 98.71 0.01 0.97

Nephrology 97.23 99.03 98.13 98.12 0.02 0.96

Cardiology 96.21 97.83 97.02 97.01 0.03 0.95

Rheumatology 94.12 96.37 95.24 95.23 0.05 0.95

Pulmonology 94.96 96.39 95.67 95.66 0.05 0.99

Otorhinolaryngology 96.81 99.07 97.94 97.92 0.03 0.94

Ophthalmology 97.33 99.87 98.60 98.58 0.02 0.97

Geriatric Medicine 95.39 97.34 96.36 96.35 0.04 0.97

Orthopedics 96.32 98.71 97.51 97.50 0.03 0.96

Pathology 95.71 97.87 96.79 96.77 0.04 0.95

98.36, 97.23, 96.21, 94.12, 94.96, 96.81, 97.33, 95.39, 96.32, 95.71, respectively. The average accuracy
percentage for the above mentioned domains are 98.32, 97.32, 99.33, 96.21, 98.27, 96.36, 99.93, 98.31,
97.37, 99.36, 99.07, 99.03, 97.83, 96.37, 96.39, 99.07, 99.87, 97.34, 98.71, 97.87, respectively.

The accuracy in percentage, F-Measure, FDR, nDCG for radiodiagnosis is 97.32, 97.30972462,
0.0368, 0.97; pharmaceuticals is 96.565, 96.55909698, 0.0419, 0.98; general medicine is 98.325,
98.31472769, 0.0268, 0.96; dermatology is 95.55, 95.54544113, 0.0511, 0.97; community medicine is
98.33, 98.32996339, 0.0161, 0.99; nuclear medicine is 95.42, 95.41073989, 0.0552, 0.96; pediatrics is
99.87, 99.86996395, 0.0019, 0.95; obstetrics and gynecology is 97.59, 97.58468798, 0.0313,0.97; bio-
statistics is 96.68, 96.67507551, 0.0401, 0.98; gastroenterology is 98.495, 98.48740342, 0.0237, 0.96;
neurology is 98.715, 98.71372334, 0.0164, 0.97; nephrology is 98.13, 98.12174564, 0.0277, 0.96; car-
diology is 97.02, 97.01323748, 0.0379, 0.95; rheumatology is 95.245, 95.2317119, 0.0588, 0.95; pul-
monology is 95.675, 95.66965665, 0.0504, 0.99; otorhinolaryngology is 97.94, 97.92696243, 0.0319,
0.94; ophthalmology is 98.6, 98.58364199, 0.0267, 0.97; geriatric medicine is 96.365, 96.35513516,
0.0461, 0.97; orthopedics is 97.515, 97.50035584, 0.0368, 0.96; pathology is 96.79, 96.77794917,
0.0429, 0.95, respectively.

Fig. 12.4 depicts the variation of precision in percentage versus the number of recommendations
generated by the system. It is evident from the graph that the suggested approach, IntelliOntoRec,
has better average precision than any other baseline model. The average precision decreases gradually
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FIGURE 12.4

Precision distribution graph.

with the number of recommendations for all models considered in this study. It is also evident that the
proposed approach performance is better than any other baseline approaches considered in the study as
it has the highest average precision value than HFOM, OntoYield, STOL, and SAMO.

Table 12.4 presents the information about the numerous ontologies on various domains used in
this study. Ontology belonging to the domain radiodiagnosis, pharmaceuticals, general medicine, der-
matology, community medicine, nuclear medicine, pediatrics, obstetrics and gynecology, biostatistics,
gastroenterology, neurology, nephrology, cardiology, rheumatology, pulmonology, otorhinolaryngol-
ogy, ophthalmology, geriatric medicine, orthopedics, pathology has 22805, 28916, 43817, 44001,
58914, 41113, 68181, 38106, 27804, 51106, 40316, 28110, 36174, 38761, 44328, 50201, 44176,
33044, 51121, 27476 classes, respectively. The ontologies of the domains mentioned in the previous
sentence have 76714, 87681, 120271, 138101, 111786, 101171, 102021, 76381, 86378, 96874, 78122,
81175, 104023, 82674, 71144, 108746, 102121, 85714, 96832, 81674 individuals, respectively.

12.6 Conclusion
In this chapter, an efficient method, the knowledge infused semiautomatic approach, is put forward
for ontology formulation in healthcare and medical science domains. The outcomes obtained prove
the adequacy of the proposed approach, InelliOntoRec for intended purposes. It achieves a precision
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Table 12.4 Details of concepts and individuals in the final
ontologies generated.

Domain ontologies No. of concepts No. of individuals
Radiodiagnosis 22805 76714

Pharmaceuticals 28916 87681

General Medicine 43817 120271

Dermatology 44001 138101

Community Medicine 58914 111786

Nuclear Medicine 41113 101171

Pediatrics 68181 102021

Obstetrics and Gynecology 38106 76381

Biostatistics 27804 86378

Gastroenterology 51106 96874

Neurology 40316 78122

Nephrology 36174 81175

Cardiology 38761 104023

Rheumatology 44328 82674

Pulmonology 50201 71144

Otorhinolaryngology 44176 108746

Ophthalmology 33044 102121

Geriatric Medicine 44176 85714

Orthopedics 33044 96832

Pathology 51121 81674

of 97.71%, average recall of 99.42%, average accuracy of 98.57%, F-Measure of 98.58%, FDR of
0.023, and nDCG of 0.98 implying that it is by far the most effective solution. The proposed model
outperforms the baseline approaches considered in this study significantly to formulate ontologies for
its intended applications in the medical and healthcare related domains. The prospective future includes
developing more efficient and accurate hybrid statistical and heuristic models incorporating diversity
indexes.
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